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SUMMARY

PROGRAM STAT US

The National Aeronautics and Space Administration, in its space

exploration program, has promoted space communications through

hardware development and technical studies. August 6, 1965, the

Goddard Space Flight Center, NASA, awarded the Hughes Aircraft

Company a study contract for Parametric Analysis of Microwave and

Laser Systems for Communications and Tracking, NAS 5-9637.

This study contract has three basic purposes: first, to collect

the information and conclusions of previous studies and present them in

a readily accessible form. Secondly, to formulate a "Reference Data

for Advanced Space Communications and Tracking Systems" which will

contain: (1) a methodology for solving space communication and track-

ing problems, {2} parametric studies of the parameters involved in the

methodology and, {3) a state-of-the-art documentation of the parameter

values. Finally, the third major purpose of the study is to evaluate the

capability and amenability to modification of the available world-wide

communication and tracking system to the increased performance

requirements of future microwave and optical communications systems.

The Parametric Analysis of Microwave and Laser Systems for

Communication and Tracking is to be conducted in two phases. Phase I

had a six-month duration and Phase II has a thirty-three month duration.

The study is presently at the twelve-month point of Phase II. The

present program plan for the study is indicated in Figure 1. For calendar

1966 and 1968 this plan indicates periodic updating and enlargement of

the first issue of "Reference Data for Advanced Space Communication

and Tracking Systems." During 1967 the majority of the low level

program effort will be devoted to determining optimum solutions of

space communication configurations.

SIXTH QUARTER EFFORT

During the sixth quarter effort was expended on refinement of

portions of the Methodology section and updating of the "Heat Radiator

Systems" section.
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PHASE II PROGRAM PLAN SUBMITTED

PHASE II GO-AHEAD

UPDATING OF "REFERENCE DATA FOR ADVANCED SPACE COMMUNICATION
AND TRACKING SYSTEMS"

METHODOLOGY

MISSION ANALYSIS

COMMUNICATION THEORY

TRANSMITTING POWER SOURCES

DETECTORS

MODULATORS

ACQUISITION AND TRACKING

RADIO FREQUENCY ANTENNAS

OPTICS

PRIME POWER

RADIATION BACKGROUND AND ATMOSPHERIC PROPAGATION

GROUND RECEIVING SITES

HEAT RADIATORS

SYSTEMS IMPLEMENTATION

COMMUNICATION SYSTEM PROBLEM SOLUTIONS

QUARTERLY REPORTS

QUARTERLY REVIEW MEETINGS

FINAL REPORT

TECHNICAL SECTION UPDATED

1966

123

_lllm l

!!!!7'

1967
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1968
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Figure I. Program plan for Parametric Analysis of Microwave

and Laser Systems for Communications and Tracking.

The Methodology, as given in the 6 December 1966 issue, provided

a means of determining an optimum centerline design for a communica-

tions system. Optimization to date has been made on the basis of

minimized cost. _:_ However optimization on the basis of weight is easily

implemented in the computer programmed optimization procedure by

setting certain parameters to zero. The computer program accuracy

is, of course, critically dependent upon the input data it receives.

Much of this data is empirical. For example, the relationship between

an antenna weight and its diameter is given the computer by the

relationship

n T

= (d T ) +
Wd T Kd T WK T

Since a dominant cost of space hardware is putting the payload

in space, optimizing on the basis of cost, in essence, minimizes pay-

load weight.
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where

Wd T

d T

n T

W

K T

is the antenna weight

is the antenna diameter

is a constant but not necessarily an integer

is a fixed weight

The constants of this equation are determined empirically and pro-

grammed into the computer. During the past quarter better empirical

data has been gathered for parameter values such as the antenna weight

noted above. Perhaps more significant is the successful operation of

three computer programs with the fractional exponents, e.g., n T = 2.3.

These programs are: (1) the optical direct, thermal noise limited,

detection (TOP), (2) optical heterodyne detection (HOP), and (3) the

radio receiver program (ROP). The Fortran IV computer printouts of

these programs are given in this report in Appendices A2.5, A2.6, and

A2. 7 of Section 2.0, Methodology. Additional updated material is given

as Methodology appendices in Appendices A2.1, Nomenclature; A2.2,

Input Data Program; A2.3, Output Data Program.

The TOP, HOP, and ROP optimization programs have been used

to calculate optimum system parameters for a Jupiter communication

link. This was done for a carrier wavelength of I0.6 microns and a

radio frequency of 2.3 GHz. While the data from these computer calcu-

lations must still be regarded as preliminary since sensitivity of the

output data has not been correlated with input data and since the constants

of the computer program input data have not yet been fully reviewed in

all the technology areas, the data does provide very interesting com-

parisons and shows general trends.

The TOP, HOP, and ROP data is given in Figure Z, 3, and 4 and

in Table i. Figure 2 is a total cost comparison of the three systems

made on the basis of an optimized minimum cost system. Booster cost

and ground receiving system costs were considered in the optimization

but only the spaceborne costs are shown in Figure 2. Figure 3 is a com-

parison of the spaceborne weights of these three systems which were se-

lected on the basis of minimum cost. Figure 4 gives the variable parameter
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values for the cost optimized systems. Figures 2, 3, and 4 are all

plotted as a function of bit rate and assume a 14 db receiver signal to

noise ratio.

Table l contains a tabulation of the weights of the three systems.

The total weight noted in Table l corresponds to the values given in

Figure 3.

The second major area of emphasis during the past quarter has

been the updating and revising of Section 14.0, Heat Radiator Systems.

The material of this section has been revised to incorporate more data

into the graphics and now includes weight and cost burden relationships.

These are being used in the Methodology to determine optimum com-

munications systems configuration based upon minimum cost or mini-

mum weight systems.

Cost and weight burden relationships for technology areas other

than Heat Radiator Systems have been examined during the last quarter.

These will be incorporated in future reports with the complete updating

of the corresponding technology section.
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i. 0 INTRODUCTION

I. 1 PURPOSE

"Reference Data for Advanced Space Communications and Tracking

Systems" is being produced for the Goddard Space Flight Center by the

Hughes Aircraft Company under NASA Contract NAS 5-9637. The pur-

pose of this contract is to perform a parametric study with the following

goals:

I. Perform overall systems tradeoff studies in sufficient detail

to identify those missions which will make the best use of

laser/optical, microwave, or a combination of microwave

and laser/optical communication and tracking systems.

Z. Provide a plan for optimumly integrating such future micro-

wave and/or laser/optical communication and tracking

systems into present and future world-wide systems.

3. Provide overall systems design criteria or specifications

for microwave and/or laser/optical communication and

tracking systems.

The first issue of "Reference Data for Advanced Space Communi-

cation and Tracking" provided preliminary data for the achievement of

these goals. This data was presented in 13 technical sections, in

addition to the introductory material. These technical sections were

designed to meet the contract goals listed above, as follows:

• The Methodology section provides a basis for determining

the optimum communication and tracking system configura-

tion, whether it be at microwave, millimeter waves, or

optical frequencies. The Methodology section, in its detailed

documentation of functional relationships, also establishes

the parametric studies which must be performed in each

technological area.

• Two sections of the Reference Data will dominate in estab-

lishing a means of integrating future space communication

systems with existing and future ground facilities. These

l-l 6March 1967



are Mission Analysis and Ground Receiving Sites. Mission

Analysis is concerned with overall future space mission goals
and the facilities for their achievement. Present Ground

Receiving Sites are documented in the 6 December 1966
report. The final report will contain a refinement of this

data and give criteria for future receiving systems.
• The basis for system design criteria is found in the remain-

ing technical sections. They are: Communication Theory,
Transmitting Power Sources, Detectors, Optical Modulators,

Acquisition and Tracking, Radio Frequency Antennas, Optics,

Spacecraft Prime Power Generation, Background Radiation
and Atmospheric Attenuation, and Heat Transfer Systems.

In this sixth quarterly report of "Parametric Analysis of Micro-
wave and Laser Systems for Communications and Tracking" the Heat

Radiator Section has been updated. It completely replaces the earlier

edition dated 6 February 1966. In addition, several Appendices of the

Methodology have been revised and replace earlier editions dated
6 December 1966.

i. Z REFERENCE DATA FORMAT

Each Reference Data Section is formed of six basic subsections.

They are:

• Introduction

• Theory
• Performance

• Burden Relationships
• Nomenclature

• References

Each subsection of this basic structure is used in the component

technology sections. However, some sections are not completely
amenable to this organization of material and variations are allowed.
The intent of the subsections is as follows.

I-Z
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1. Z. 1 Introduction

This subsection introduces the material of the section. The status

of the section in relation to its ultimate development may be noted.

1.2.2 Theory

This subsection is designed to introduce the reader to the theory

of the technological area being discussed. Basic relationships are

given but extensive derivations are avoided. The theory is presented

as a guide for using the material of the section and as a means to pro-

ject parameter capabilities.

1.2.3 Performance

This subsection contains the documented state of the art of the

technology. It lists new variants of the technology and tabulated param-

eters and performance.

1.2.4 Burden Relationships

This subsection contains the parametric relationships of the

section technology. Of particular concern is the relationship of

parameter values as a function of weight, cost, size, etc. Ancillary

equipment required by the technology are also described in this

subsection.

1.2. 5 Nomenclature

A nomenclature subsection was introduced in the 6 June 1966

issue of "Reference Data for Advanced Space Communication and

Tracking Systems." It is intended to apply only to the section of

which it is a part. It will form the basis for a complete and uniform

nomenclature for the entire volume.

1.2.6 References

This subsection lists references used in the section proper. The

references are not intended as an extensive bibliography but rather to

direct the reader to the source of the documented material.

i-3



I. 3 FRONT MATTER

The Table of Contents, List of Illustrations and List of Tables is

complete for the entire volume of "Reference Data for Advanced Space
Communication and Tracking Systems." The date of last issue for

each section is given in the Table of Contents. Text material for

sections not updated in this issue may be found in the second issue

dated 6 June 1966, Report Number P66-135, in the third issue dated

6 September 1966, Report Number P66-ZI3, and in the fourth dated

6 December 1966, Report Number P67-09. (Note that the first issue

dated 6 February 1966, Report Number P66-16, has now been com-

pletely replaced by subsequent editions. )
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APPENDIX A2. 1

NOM ENC LAT URE

Compute r

Symbol

PT

DT

DR

THER

RB

PT_

DT%

DR%

THER_

PTI

DTI

DRI

THRI

PTB

DTB

DRB

THERB

PTM

DTM

DRM

THERM

Text

Symbol

P
T

d T

d R

OR

R B

PTO

dTo

dRo

eRO

PTI

dTI

dRI

ORI

P
TB

dTB

dRB

ORB

P
TM

dTM

dRM

8RM

Description

System Parameters

transmitter power

transmitter ape rture diameter

receiver aperture diameter

receiver field of view

information rate

optimum value of P T

optimum value of d T

optimum value of d R

optimum value of 8 R

initial program value of P T

initial program value of d T

initial program value of d R

initial program value of e R

limit value of P
T

limit value of d T

limit value of d R

limit value of e R

fixed value of PT

fixed value of d T

fixed value of d R

fixed value of e R

(= 0 for no constraint)

(= 0 for no constraint)

(= 0 for no constraint)

(= 0 for no constraint).
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Computer
Symbol

T e xt

Symbol Des cription

System Costs

CDT

CDR

CAT

C THT

CTHR

CQT

CNT

CAR

CQR

CNR

CFL

CPT

CM

CD

CFM

CFD

CKT

CKR

Cd T

Cd R

CAT

C8 T

C e
R

CQT

CNT

CAR

CQR

CNR

CFL

Cp
T

C M

C D

CFM

CFD

CKT

CKR

= transmitter antenna cost

= receiver antenna cost

transmitter acquisition and track

equipment fabrication cost independent
of transmitter beamwidth

transmitter antenna fabrication cost

= receiver antenna fabrication cost

transmitter acquisition and track

equipment cost

transmitter acquisition and track
equipment fabrication cost

receiver acquisition and track equip-
ment fabrication cost independent of
receiver field of view

receiver acquisition and track
equipment cost

receiver acquisition and track
equipment fabrication cost

transmitter fabrication cost

transmitter cost

modulation equipment cost

demodulation equipment cost

modulation equipment fabrication cost

demodulation equipment fabrication cost

transmitter antenna fabrication cost

independent of transmitter aperture
diameter

receiver antenna fabrication cost inde-

pendent of receiver aperture diameter
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Computer
Symbol

Text
Symbol Description

CKH

CST

CSR

CH

CFT

CFR

CKP

CKM

CKD

CKE

CKF

CS

CV

CFA

CFB

CG

CKH

CST

CSR

C H

CFT

CF K

CKp

CKM

CKD

CK E

CKF

C S

C V

CFA

CFB

C G

= transmitter heat exchanger fabrication cost
independent of transmitter power
dis sipation

= transmitter power supply cost

= receiver power supply cost

= heat exchanger fabrication cost

= transmitter power supply fabrication cost

= receiver power supply fabrication cost

= transmitter fabrication cost independent
of transmitter power

= modulation equipment fabrication cost
independent of information rate

= demodulation equipment fabrication cost
independent of information rate

= transmitter power supply fabrication
cost independent of transmitter
power requirement

= receiver power supply fabrication
cost independent of receiver

power requirement

= total system cost

= variable part of total system cost
(optimization cost)

= fixed part of total transmitter cost

= fixed part of total receiver cost

= cost of transmitter, transmitter power

supply, and transmitter heat exchanger
which is dependent upon transmitter
power
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C omput er

Symbol

T ext

Symbol D e s c ription

CT

CQ

CR

CFA

CFB

CA

CB

CT¢

CR¢

CG_

cQ¢

cv¢

C T

CQ

C R

CFA

CFB

C A

CBO

CT O

CRO

CGO

CQO

CVO

cost of transmitter antenna, transmitter

acquisition and track equipment, and

associated power supply which is

dependent upon transmitter _perture
diameter

cost of receiver acquisition and track

equipment which is dependent upon
receiver field of view

cost of receiver antenna, receiver

acquisition and track equipment, and

associated power supply which is

dependent upon receiver aperture

diameter

total transmitter fabrication costs for

optimum system parameters

total receiver fabrication costs for

optimum system parameters

m_ total transmitter cost for optimum

system parameters

total receiver cost for optimum system

parameters

value of C
T

parameters

for optimum system

value of C R for optimum system

parameters

value of CG for optimum system

parameters

value of CQ for optimum system
parameters

m_ value of C V for optimum system

parameters
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Compute r

Symbol

WDT

WDR

WQT

WBT

WQR

W BR

WT

WM

WD

WSR

WST

WH

WKT

WKR

W KP

W KH

T ext

Symbol

Wd T

Wd R

W
QT

WBT

WBR

W T

W M

W D

WSR

WST

W H

WKT

W
KR

W
KP

WKH

Description

System W eights

transmitter antenna weight

= receiver antenna weight

transmitter acquisition and track
equipment weight

transmitter acquisition and track
equipment weight independent of
transmitter beamwidth

receiver acquisition and track

e quipment weight

receiver acquisition and track
equipment weight independent of
receiver field of view.

transmitter weight

modulation equipment weight

demodulation equipment weight

receiver power supply weight

transmitter power supply weight

transmitter heat exchanger weight

transmitter antenna weight independent
of transmitter aperture diameter

receiver antenna weight independent of

receiver aperture diameter

transmitter weight independent of
transmitter power

transmitter heat exchanger weight inde-
pendent of transmitter power dissipation
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Compute r

Symbol

T ext

Symbol De s c ription

WKM

WKD

WKE

WKF

WA

WB

WKM

WKD

WKE

WKF

W A

W
B

modulation equipment weight independent
of information rate

demodulation equipment weight inde-
pendent of information rate

transmitter power supply weight

independent of transmitter power

requirement

receiver power supply weight inde-

pendent of receiver power requirement

total transmitter weight for optimum

system parameters

total receiver weight for optimum

system parameters
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Computer

Symbol

PQT

PQR

PPT

PM

PD

PST

PSR

PA

PB

Text

Symbol

PQT

P
QR

PPT

P
M

P
D

PST

PSR

PA

P
B

Description

System Power Requirements

transmitter acquisition and track

equipment power requirement

receiver acquisition and track

equipment power requirement

transmitter power requirement

modulation equipment power

requirement

demodulation equipment power

requirement

transmitter power supply power

requirement

receiver power supply power

requirement

total transmitter power requirement for

optimum system parameters

total receiver power requirement for

optimum system parameters
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Computer

Symbol

KDT

KTHT

KS

KDR

KTHR

KAT

KWAT

KPQT

KAR

KWAR

KPQR

KWT

KPT

Text

Symbol

Kd t

Ke T

K S

Kd R

KO R

KAT

KWAT

KPQT

KAR

KWAR

T

KP T

Description

System Constants of Proportionality

constant relating transmitter antenna

weight to transmitter aperture diameter

constant relating transmitter antenna

fabrication cost to transmitter aperture
diameter

cost per unit weight for spaceborne

equipment

constant relating receiver antenna weight

to receiver aperture diameter

constant relating receiver antenna fabri-

cation cost to receiver aperture diameter

constant relating transmitter tracking

equipment fabrication cost to transmitter
be amwidth

constant relating transmitter tracking

equipment weight to transmitter antenna

weight

constant relating transmitter acquisition

and track equipment power requirement

to equipment weight

constant relating receiver tracking

equipment fabrication cost to receiver

field of view

constant relating receiver tracking

equipment weight to receiver antenna

weight

constant relating receiver acquisition

and track equipment power requirement

to equipment weight

constant relating transmitter weight to

transmitter power

constant relating transmitter fabrication

cost to transmitter power
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Computer
Symbol

KPM

KPD

KST

KWST

KSR.

KWR

KH

KX

KM

KFM

KD

KFD

KQT

KMT

Text

Symbol

KP M

KP D

KST

KWsT

KSR

KWR

K X

K M

KFM

K D

KF D

K
qT

K
m T

Description

constant relating modulation equipment

power requirement to equipment weight

constant relating demodulation equip-

ment power requirement to equipment

weight

constant relating transmitter power

supply fabrication cost to power
requirement

constant relating transmitter power

supply weight to power requirement

constant relating receiver power supply

fabrication cost to power requirement

constant relating receiver power supply

weight to power requirement

constant relating transmitter heat
exchanger fabrication cost to transmitter

power dissipation

constant relating transmitter heat

exchanger weight to transmitter power

di s sip ation

constant relating modulation equipment
weight to information rate

constant relating modulation equipment
fabrication cost to information rate

constant relating demodulation equipment
weight to information rate

constant relating demodulation equipment
fabrication cost to information rate

constant defined in text

constant defined in text
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Computer

Symbol

KNT

KQR

KMR

KNR

KGT

KHT

KJT

QT

MT

NT

QR

MR

NR

GT

HT

KN

K

KT

KR

KE

Text

Symbol

K

n T

K

qR

K

m R

K

n R

K

gT

K.
_T

qT

m T

n T

qR

m R

n R

gT

h T

K N

K

K M

K K

k
e

D e s c ripti on

constant defined in text

= constant defined in text

= constant defined in text

= constant defined in text

= constant defined in text

= constant defined in text

= constant defined in text

cons tant

constant

constant

c on s tant

constant

constant

C on s tant

constant

SNR constant for shot noise limited direct

and heterodyne detection optical receiver

SNR constant for shot noise limited direct

detection optical receiver

SNR constant for thermal noise limited

direct detection optical receiver

SNR constant for radio receiver

transmitter power efficiency
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Compute r

Symbo 1

R

LMBDI

TAUT

TAUR

TAUA

ETA

QB

LAMBDA

RL

SMK

H

Q

C

TE

USBQ

UNBQ

T ext

Symbol

R

k.
I

B o

A

Q

G

I D

"t

T
r

T
a

rl

QB

k

R L

k

h

q

C

T
e

(_s, B)
Req

(_N, B)
Req

Description

transmission range

receiver input filter bandwidth in

wavelength units

receiver output filter bandwidth in

frequency units

optimization dummy variable

optimization dummy variable

detector current gain

detector dark current

transmitter transmis sivity

receiver transmis sivity

atmospheric transmis sivity

detector quantum efficiency

background radiation photon spectral
radiance

transmission wavelength

receiver load resistance

Boltzsrnann' s constant

Planck's constant

electronic charge

velocity of light

re ce ive r tempe rature

number of signal photoelectrons required

pe r bit

number of noise photoelectrons required

per bit
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Compute r

Symbol

USS

UNS

SN

KB

CP

Text

Symbol

_S, S

_N, S

R B

Cp

Description

number of signal photoelectrons per

second

number of noise photoelectrons per

second

re ceive r output powe r s ignal-to-noise
ratio

information rate in bits per second

constant relating shot noise powers due

to signal and background radiation
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APPENDIX AZ. Z

INPUT DATA PROGRAM

FUNCTION

The function of the input data program is to provide parametric

computer plots of the system burdens as a function of the major system

parameters.

DES CRIP TION

Exhibit A2. Z-1 is a flow chart of the Input Data Program. The

input independent variables are listed below:

transmission wavelength (microns) k [k I ..... ,kS]

information rate (bits per second) R B [101, 102, .... , 1010]

transmitter aperture diameter {cm) d T [1, Z, 5, 10,20,50, 100]

receiver aperture diameter (cm) d R [10, Z0,50, 100, ZOO, 500, 1000]

transmitter power (watts) PT [1%Z, 5, 10, 20, 50, 100]

receiver field of view (tad.) @R [0. lx 103 , 0.2 x 10 -3 ,

0.5 x i0 -3 , 1.0 x 10 -3 ]

Exhibit A2.2-2 contains a typical listing of the required system burdens

data. Exhibit A2.2-3 contains a listing of the plots generated by the

computer. Exhibit A2.2-4 contains a listing of the Fortran IV Input

Data Program.

A2.2-1 6 March 1967



EXHIBIT A2. Z- 1

OPTIMIZATION METHODOLOGY INPUT DATA PROGRAM

START

READ INPUT INDEPENDENT

VARIA BLES

READ AND PRINT SYSTEM BURDENS DATA

COMPUTE AND PLOT SYSTEM WEIGHT

BURDENS

COMPUTE AND PLOT SYSTEM POWER

BURDENS

COMPUTE AND PLOT SYSTEM FABRICATION

COST BURDENS

COMPUTE AND PLOT SYSTEM COMPONENT

COST BURDENS

COMPUTE AND PLOT SYSTEM COST

VARIABLES

EXIT
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EXHIBIT A2. 2-3

INPUT DATA PROGRAM COMPUTER PLOTS

All plots versus transmission wavelength.

System Weight Burdens

WdT vs d T

WdR vs d R

WQT vs d T

WQR vs d R

W vs P
T T

W H vs PT

W M vs R B

W D vs R B

WST vs PT

WST vs PT

WST vs PT

WSR vs d R

R B = 10 8, d T

R B = 10 8, d T

R B = 10 8, d T

R = l0 8
B

= i0 cm

= ZO cm

= 50 cm

System Power Burdens

PQT vs d T

PQR vs d R

PPT vs PT

PM vs R B

PD vs R B

A2.2-4
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EXHIBIT A2. 2-3 (continued)

System Fabrication Cost Burdens

CST vs dT

CeR vs dR

CNT vs d T

CNR vs eR

C vs P
FL T

C H vs PT

CFM vs R B

CFD vs R B

CFT vs PT

C vs P
FT T

C vs P
FT T

CFR vs dR

R B = 108 , dT = i0 cm

R B = 108 , d T = Z0 cm

R B = 108 , dT = 50 cm

R = 108
B

System Component Cost Burdens

CdT vs d T

CdR vs dR

CQT vs d T

CQR vs dR

Cp vs PT
T

C M vs R B

C D vs R B

CST vs PT

CST vs PT

R B = 108, dT = i0 cm

R B = 108, dT = Z0 cm
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EXHIBIT A2. 2-3 (continued)

CST vs PT RB = 108' dT

CSR vs d R R B = 108

System Cost Variables

C T vs d T

C R vs d R

C G vs ImT

CQ vs @R

= 50 cm
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EXHIBIT AZ. Z-4

$JOB ¢F

$IBJOB CER

$1BFTC MAIN

56030t2113A,01}409591000 C_EeRADFORD

GO,HAP

LIST,DECK

COHMON /CURVE / LAM(IO), KE(IO), OT(10), THER(IO), PL(IO), OR(IO)

* /FOFDT / WDT(IO), WQT(IO), PQT(IO), CTHT(IO), CNT(IO),

* CDT(10!, CQT(IO)_ CT(IO)

* /FOFDR / WDR(IO), WQR(IO), WSR(IO), PQR(IO), CTHR(IO)W

* CFR(IO), CDR(101, CQR(IO), CSR(IO), CR(10t,

* . BD(IO)

* /FOFPL / WT(IO), WH(IO), WSTI(IO), WST2(10), WST3(IO),

* PPT(IO), CFL(IO), CFTI(IO), CFT2(IO), CFT3(IO),

* _31101_ CHllO)tCPT(IO),CSTI(IO),CST2(IO),CST3(IO)* /FOFBD / _(10) WD(IO), PM(10) , PD(10) , CFM(IO) ,

m

CF

/FOFTHR/ CN

/FREQ / NOI

COMMON /TANTNA/ KTI

* /RANTNA/ KTI

* /TACTRS/ K

* /RACTRS/ KI

* IXMITERI KF

* W)

(10), CM(IO), CD(IO)

(10), CTH(IO)

AM, NODT, NOTHR, NOPL, NODR, NOBD

rTt KDT, CKT, WKT, MT, NT

!R, KDR, CKR, WKR, MR, NR

,T, KWAT, KPOT, CAT, CTT, WBT, QT

R,'KWAR, KPOR, CAR, CTR, WAR, QR
'T(IO), KWT(IO), KH, KX, CKP(IO), CKH,

,P, WKH, PKT, GT, HT
* /MOD / KFM(IO), KM(IO), KPM, CKM(10), WKM(10)

* /DMOD / KFD(10), KD(10), KPD, CKD,(IO), WKD(IO)

* /TPOWERI KST, KWST, CKE, WKE

* /RPOWER/ KSR, KWSR, CKF, WKF

* /GEN / KS

I000 FORMAT( IH1 //// )

10 CONTINUE

CALL INPUT

DO 2OI = 1,NOLAM

WRITE( 2,1000 )

CALL COST( I )

CALL OUTPUT( I )

20 CONTINUE

GO TO 10
END

$IBFTC INPUT DECK

SUBROUTINE INPUT

REAL KE, KTHT, KDT, MT, NT, KTHR, KDR, MR, NR, KAT, KWAT, KPQT,

* KAR, KWAR, KPQR, KPT, KWT, KH, KX, KFM, KM, KPM, KFD, KD, KPD,

* KST, KWST, KSR, KWSR, KS, LAM

COMMON /CURVE / LAM(IO), KE(IO), DT(IO), THER(IO), PL(IO), DR(IO)
/FOFDI /WDT(ZO), WQT(IO), PQT(IO), CTHT(IO), CNT(IO),

CDT(IO), CQT(ZO), CT(IO)

/FOFDR / WDR(IO), WQRIIO), WSR(IO), PQR(10), CTHR(IO),

CFR(IO), CDR(10), CGR(10), CSR(IO), CR(IO),

COMMON /TANTNA/ KTHT,

* /RANTNA/ KTHR,

BD(10)

/FOFPL / WT(IO

PPT(IO

CG(10

/FOFBD / WM(IO

CFD(10

/FOFTHR/ CNR(IO

IFREQ

, WH(10), WSTI(IO), WST2(IO), WST3(IO),

, CFL(IO), CFTI(10), CFT2(IO), CFT3(IO),

, CH(IO),CPT(10),CSTI(10),CST2(IO),CST3(IO)

, WD(IO), PM(lO), PD(IO), CFM(IO),

, CM(IO), CD(IO)

, CTH(10}

/ NOLAM, NODT, NOTHR, NOPL,,NODR, NOBD

KDT, CKT, WKT, MT, NT

KDR, CKR, WKR, MR, NR

0020

0030

0040

0050

0060

0070

0080

0090

0100
0110

0120

0130

0140
0150

0160

0170

0180

0190

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

O35O

0360

0370

0380

0390

0400

0410

0420

0430

0440

0450

0460

0470

G480

0490

0500

0510

0520

0530

0540

0550

0560

0570
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EXHIBIT AZ. 2-4 (continued)

2000

2010

/TACTRS/ KAT, KWAT, KPQT, CAT, CTT, WBT• QT

/RACTRS/ KAR, KWAR, KPGR, CAR• CTR, WBR, OR

/XNITER/ KPT(IO)• KWT(IO), KH, KX, CKP(IO), CKH,

* WKP• WKH, PKT, GT, HT

* /MOD / KFH(IO), KM(IO)• KPM, CKh1(lO)t WKM(IO)

* IDMO_ / KFD(IO), KD(IO}, KPD, CKD(IO), WKD(IO)
* /TPOWER/ KST• KWST, CKE• WKE

* IRPOWER/ KSR• KWSR• CKF, WKF

* IGEN I KS

FORMAT( 5115 }

FORMAT( 5E15,7 )

NOLA_, NODT, NOTHR, NOPLt NODR• NOBD

LAM(1), I: I,NOLAM

READ( 1,2000

READ( 1,2010

READ( 1•2010

READ( 1,2010

READ( 1,2010

READ( lt2010

READ( 1,2010

READ( 1,2010

READ( 1,2010

READ( 1,2010

READ( 1,2010

READ( 1•2010

READ( 1,201_

READ( 1,2010

READ( li2010

READ( 1,2010

READ( 1,2010

READ( 1,2010

READ( 1,2010

READ( 1,201_

KE(I

KPT(I

KWT(I

CKP(I

KFM(I

KM(I

CKM(I

WKM(I

, I= I,NOLAM

, I: 1,NOLAM

, I_ I,NOLAM

• I= ltNOLAM

, I= I,NRLAM
• I= ltNOLAM

, I= 1,NOLAM

, I= ltNOLAM

KFD(I , I: I,NOLAM

KD(1), I: I,NOLAM

CKD(I)• I= 1,NOLAM

WKD(I},'I= 1,NOLAM

DT(1), I= ItNODT

THER(1), I= I,NOTHR

PL(1), I= 1,NOPL

DR(1), I= I,NODR

BD(1), I= Z,NOBD

KTHT• KDT, CKT, WKT, MT,

NT, KTHR, KDR, CKR, WKR,

MR, NR, KAT, KWAT• KPQT,

CAT, CTT, WBT, QT• KAR,

KWAR, KPOR, CAR, CTR• WBR,

OR, KH• KX, CKH, WKP,

WKH, PKT• GT, HT• KPM,

KPD, KST, KWST, CKE, WKE,

KSR, KWSR, CKF, WKF, KS

CALL PDUMP( LAM('I), KS, I )

RETURN

END

$1BFTC COST LIST,REF,DECK

SUBROUTINE COST( K )

REAL KOT, KMT, KNT, KMR, KNR, KQR, KGT, KHT, KJT

REAL KE, KTHT, KDT, MT, NT, KTHR, KDR, MR, NR, KAT, KWAT• KPQT,

* KAR, KWAR, KPQR, KPT, KWT, KH, KX, KFM, KM, KPM• KFD, KD, KPD,

* KST, KWST• KSR, KWSRt,KS, LAM

COMMON /CURVE / LAM(IO), KE(IO),'DT(IO),THER(IO), PL(IO), DR(IO)

IFOFDT / WDT(IO), WQT(IO), PQT(IO), CTHT(IO), CNT(IO),

CDT(IO), CQT(IO), CT(IO}

/FOFDR / WDR(IO), WQR(IO), WSR(IO), PQR(IO), CTHR(IO},

CFR(IO), CDR(IO), CQR(IO),' CSR(IO}, CR(IO),

BD(IO}

/FOFPL / WT(IO), WH(IO)," WSTI(IO), WST_(IO), WST3(IO),

PPT(IO), CFL(1Q), CFTI(IO)• CFT2(IO}, CFT3(IO),

CG(IO), CH(IO),CPT(IO},CSTI(IO),CST2(IO)•CST3(IO)

0580
0590

0600
0610

0620

0630

0640

0650

0660

0670

0680

0690

07OO

0710

0720
0730

0740

O75O

0760

0770

0780

0790

0800

0810

0820

0830

0840

0850

0860

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

Ii00

Iii0

1120

1130

1140
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EXHIBIT A2.2-4 (continued)

e /FOFBD / IM(10)t WD.(10)t oPM(10)t PD(IO)t CFM(10)t

e CFD(10)_ CM(10)t CD(10)

o /FOFTHR/ CNR(IO), CTH(10)

/FREQ / NOLAH_ NODTt NOTHRt NOPLt NODRt NOBD

COMMON /TANTNA/ KTHTt KDTt CKTt WKTt MTt NT
e /RANTNA/ KTHRt KDRt CKRt WKR, MRt NR

e. /TACTR$/ KATt KWATt KPQTt CATt CTTt WBTt QT

e /RACTR5/ KARt KWARt KPQRt CARt CTRt WBRt OR

e /XMITER/ KPT(10)tKWT(IO)t KHt KXt CKP(10)t CKHt
e WKPt WKHt PKTt GTt HT

e /MOD / KFM(10)t KM(10)t KPM_ CKM(IO)t WKM(10)
/DMOD P KFD(IO)t KD(IO)t KPDt CKD(IO)t WKD(IO)

e /TPOWER/ KSTt KWSTt CKEt WKE
e VRPOWER/ KSRt KWSRt CKFt WKF

e /GEN / KS
EQUIVALENCE ( KM_tKTHT)t ( KMRtKTHR)t ( KQRtKAR)

KGT'm KPT(K)
KQT • KAT / LAM(K) m_QT

KNT • KDT.e (-KS e( lo+KWAT ) + KPQT e KWAT _ ( KST + KS _ KWST ))

KNR • KDR e ( KS _( 1,+KWAR ) + KPQR _ KWAR e ( KSR + KS _ KWSR ))

KHT• KS e'KWT( K )

KJT s KS o ( KWST/ KE(K) + KX-e ( le/KE(K)-I, )) + KST /KE(K)

e • + KH _ ( le/KE(K)-I, )

DO 10l • 1,NODT

DTNT • DT(1) eeNT
WDT(I) • KDT e DTNT + WKT

WQT(_) .WBT + KWAT t KDT _ DTNT
POT(I) • KPQT _ ( WBT + KWAT e KDT _ DTNT )

CTHT(1) m KTHT _ DT(I! _HT + CKT

CNT(I) • CAT + KAT / LAH(K) e_QT * DT(I) **QT

CDT(I) • CTHT + KS * WDT(I)

CQTII) m CAT + CTT + KS _ WQT(I)

CT(1) • KQT _ 'DT(I) !_QT + KMT e DT(Z) _MT + KNT _ DTNT

10 CONTINUE

DO 20I • ltNODR

'DRNR • DR(I) _NR

WDR(Z) • KDR _ DRNR + WKR

WOR(I) • WBR + KWAR-_ KDR _ DRNR
HOLD• KPD_( KD(K) _1,E8 + WKD(K) ) + KPQR e ( WBR + KWAR

e KDR e DRNR )

WSR(I) • KWSR _ HOLD + WKF

PQR(I) m KPQR e ( WBR + KWAR' _ KDR _ DRNR )
CTHR(1) • KTHR _ DR(I) _MR + CKR

CFR(I) • KSR _ HOLD + CKF

CDR(I) • CTHR(I) + KS e WDR(II

CQR(I) • CAR + CTR + KS _ WQR(I)

CSR(I) s CFR(I') + KS _ WSR(I)

CR(I) • KMR e DR(I) eeMR + KNR _ DRNR
20 .CONTINUe

DO 301 m'ltNOPL

WT.(I) • KWT(K) _ PL(I) _*HT + WKP

WH(I) • KX _( 1,/KE(K)-I, ) _ PL(I) + WKH

WSTI(I) • KWST _ ( KPM _ KH(K) tl,E8 + PL(I) / KE(K) + KPOT *

e ( WBT + KWAT * KDT _ (10,) _NT ) ) + WKE

WST2.(1) •.KWST e ( KPH _ KM(K) el,E8 + PL(I) / KE(K) + KPQT *

• ( WBT + KWAT _ KDT _ (20,) _NT ) ) + WKE

WST3(I) • KWST e ( KPM _ KM(K) _1,E8 + PL(I) / KE(K) + KPQT

11_0

1160

1170
1180

1190

1200
1210

1220

1230

1240

1250

1260
1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1_00

1410
1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670
1680

1690

1700

171O
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EXHIBIT AZ. Z-4 (continued)

* ( WLBT + KWAT * KDT * (50.) **NT ) ) + WKE

PPT(1) = PL(I) /KE(K) + PKT

CFL(1) = KPT(K} * PL(1) **GT + CKP(K)

CH(1) = KH * ( I./KE(K)-I. ) * PL(1) + CKH

CFTI(1) = KST * ( KPM * KM(K) * 1.E8 + PL(1)/KE(K) + KPQT *

* ( WBT + KWAT * KDT * (I0.) **NT ) ) + EKE

CFT2(1) = KST * ( KPM * KM(K) * 1.E8 + PL(I} /KE(K) + KPQT *

* ( WBT + KWAT * KDT * (20.) **NT ) ) + CKE

CFT3(I} = KST * ( KPM * KM(K) * 1.E8 + PL(I} /KE(K) + KPQT *

* ( WBT + KWAT * KDT * (50.) **NT ) ) + CKE

CPT(I) = CFL(1) + CH(J) + KS * ( WT(1)+WH(I} }

CSTI(1) • CFTI(1)" + KS * WSTI(I}

CST2(I) = CFT2(1) + KS * WST2(I}

CST3(1) = CFT3(1) + KS * WST3(I}

CG(I} = KGT * PL(1) **GT + KHT * PL(1) **HT + KJT * PL(1)

30 cONTINUE

DO 401 • ltNOBD

WM(1) = KM(K) , BD(1) + WKM(K)

WD(I} = KD(K} * BD(1) + WKD(K)

PM(1) = KPH *(K_I(K) * BD(I} + WKM(K_ )
PD(I} KPD * ( KD(K) * BD(I} + WKD(K) )

CFM(1) = KFM(K)° * BD(1) + CKM(K)

CFD(1) = KFD(K) * BD(1) + CKD(K)

CM(1) = CFM(1) + KS * WM(1)

CD(1) = CFD(I) + KS * WO(I}

40 CONTINUE

DO 501 = I,NOTHR

CNR(I} = CAR + KAR / THER(I} **OR

CTH(1) = KOR / THER(1) **QR

50 CONTINUE

RETURN

END

$1BFTC OUTPUT LIST,DECK

SUBROUTINE OUTPUT( K )

COMMON /CURVE / LAM(IO), KE(IO), DT(IO), THER(IO), PL(IO)t DR(IO)

* /FOFDT / WDT(IO), WQT(IO), PQT(IO), CTHT(IO), CNT(IO),

* CDT(IO), CQT(IO), CT(IO)

* /FOFDR / WDR(IO), WQR(IO), W'SR(IO), PQR(IO), CTHR(IO),

* CFR(IO), CDR(IO), COR(IO), CSR(IO),. CR(IO),

* BD(IO)

* /FOFPL / WT(IO), WH(IO), WSTI(IO), WST2(IO), WST3(IO),

* PPT(IO), CFL(IO), CFTI(IO), CFT2(IO), CFT3(IO).

* CG(IO), CH(IO),CPT(IO),CSTI(IO),CST2(IO),CST3(IO)

* /FOFBD / WM(IO), WD(IO), PM(lO), PD(IO), CFM(IO).

* CFD(IO), CM(lO), CD(IO)

* IFOFTHRI CNR(IO), CTH(IO)'

* /FREQ I NOLAM, NODT, NOTHR, NOPL, NODR, NOBD

COMMON /TANTNAI KTHT, KDT, CKT, WKT, MT, NT

* /RANTNAI KTHR, KDR, CKR, WKR, _R, NR

* /TACTRS/ KAT, KWAT, KPQT, CAT, CTT9 WBT, OT

* /RACTRSI KAR, KWAR_ KPQR, CAR, CTR, WBR, QR

* /XNITER/ KPT(IO), KWT(Ih), KH, KX, CKP(IO), CKH,

* WKP, WKH, PKT, GT. HT

* IMOD I KFM(IO), KM(IO), KPM, CKM(IO), WKM(IO)

* IDMOD I KFD(IO), KD(IO), KPD, CKD(IO), WKD(IO)

* ITPOWER/ KST, KWST, CKE, WKE

* /RPOWER/ KSR, KWSR, CKF, WKF

1720

1730

1740

1750

1760

1770

1780
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2130
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2160
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2200
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2260

2270

2280
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EXHIBIT A2. 2-4 (continued)

IGEN I KS

DIMENSION HOLD(IO), HOLDI(IO), HOLD2(IO), HOLD3(10)

3000 FORMAT(14X 2HDT 18X 3HWDT 17X 3HWQT 17X 3HPQT 17X 4HCTHT 16X'3HCNT

*II(IE23.R, 5E20.8) )
3010 FORMAT(//lkX2HDT18X 3HCDT 17X 3HCQT 18X 2HCT II(/ E23.8, 3E20.8) )

3020 FORMAT(//14X2HDR18X 3HWDR 17X 3HWQR 17X 3HWSR 17X 3HPQR I?X 4HCTHR

*// (/ E23.8, 5E20.8) )

3030 FORMAT(//14X2HDR18X 3HCFR 17X 3HCDR !7X 3HCQR 17X 3HCSR 18X 2HCR

*// (/ E23.81 5E20.8) )

3040 FORMAT(//14X2HPLIBX 2HWT 18X 2HWH 18X 4HWST1 16X 4HWST2 16X 4HWST3

_// (/ E23.8,5E20.8) )

3050 FORMAT(//14X2HPL18X 3HPPT 17X 3HCFL 17X 2HCH 18X 4HCFT1 16X _HCFT2

_// (/ E23.8,5E20.8 ) )

3060 FORMAT(//14X2HPL18X 4HCFT3 16X 3HCPT I?X 4HCST1 16X 4HCST2 16X

* 4HCST3 // (/ E23°89 5E20.8 ) )

3070 FORMAT(//14X2HPL18X 2HCG /I (IE23.StE20.8)" )

3080 FORMAT(//14X2HBD18X 2HWM 18X 2HWD 18X 2HPM 18X 2HPD II(IE23.81

4E20°8) )

3090 FORMAT(//14X2HBD18X 3HCFM 17X 3HCFD 17X 2HCM 18X 2HCD II

_( / E23°8, 4E20.8) )

3100" FORMAT(//14X4HTHERI6X 3HCNR 17X 3HCTH II(IE23.8,2E20.8) )

3110 FORMAT( /// 14X 3HLAM 17X 3HKPT 17X 3HKWT 17X 3HKFD 17X 2HKE

* 18X 3HCKP // E23°8, 5E20.8 /II 14X 2HKD 18X 3HKFM 17X 2HKM

* IBX 3HCKD 17X 3HCKM 17X 3HWKM // E23'8, 5E20.8 III 14X 4HWKD =

* E16.8 )

WRITE( 2,3110 ) LAM(K), KPTrK), KWT(K), KFD(K), KE(K), CKP(K)t

* KD(K}, KFM(K), KM(K), CKD(K), CKM(K), WKM(K)9

WKD(K)

WRITE( 2,3000 ) ( DT(1), WDT(1), WQT(1), POT(I}, CTHT(1),

* CNT(1), I = I,NODT )

WRITE( 2,3010) DT(I), CDT(I), COT(I)+ CT(1), I = 1,NODT )

WRITE( 2_3020) DR(I), WDR(I), WQR(I), WSR(1), PQR(1), CTHR(I),

* I = I,NODR )

WRITE( 2,3030) DR(1), CFR(I), CDR(1), CQR(I), CSR(I), CR(I),

* I = I,NODR )

WRITE( 2,3040} PL(1), WT(1), WH(I}, WSTI(1), WST2(1), WST3(I),

* I : I,NOPL )

WRITE( 2,3050} PL(1), PPT(1), CFL(1), CH(1), CFTI(1), CFT2(I),

* I = 1,NOPL )

WRITE( 2,3060) PL(1), CFT3(1), CPT(1), CSTI(1), CST2(1), CST3(1)

* , I = I,NOPL )

WRITE( 2,3070) PL(1), CG(1), I= ItNOPL )

WRITE( 2,3080) BD(1), WM(1), WD(II, PM(1), PD(I}, I = ltNOBD )

WRITE( 2,3090} BD(1), CFM_I), CFD(I}, CM(1), CD(1),I=ltNOBD )

WRITE( 2,3100) TrIER(I}, CNR(1), CTH(I}, I = I,NOTHR )

IF( K °GT. 1 ) RETURN

DO 101 = 1,NODT

HOLD(1) = DT(I}

HOLDI(1) = DT(1)

10 CONTINUE

CALL CPLOT( 4,HOLD+20.,2HDT,NODT,WDT,8.,3HWDT,NODT�WQT,B°,3HWQT,

w NODT,PQT,8,,3HPQT,NODT,CTHT,8,t4HCTHT)

CALL CPLOT( 4,HOLDI,20._2HDT,NODT,CNT,8°_3HCNT,NODT,CDT,8.,3HCDT,

NODT,CQT,B.,3HCQT,NODT,CT,B.,2HCT )

DO 201 = 1,NODR

HOLD(I} = DR(1)

HOLD1((} = DR(1)
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EXHIBIT A2. 2-4 {continued)

20 CONTINUE
CALL CPLOT(SoHOLDt20,t2HDRtNODRtWDRt8,t3HWDRtNODRtWQRt8-t3HWQR9

* NODRgWSRI8,_3HWSRtNODRtPQRt8-t3HPQRt

* NODRtCTHRt8.o4HCTHR )

CALL CPLOT(StHOLDlt20. t2HDRtNODRtCFRt8.p3HCFRtNODRtCDRt8-t3HCDRt

* NODR_CQRt8eo3HC.QRgNODRtCSR,8*o3HCSRo

* NODRtCR98,t2HCR )

DO 301. • loNOPL

HOLD(I) = PL(I)

HOLD1(1) = PL(I)

HOLD2(I) • PL(1)

HOLD3(I) • PL(I)

30 CONTINUE
CALL CPLOT(61HOLDt20,92HPLtNOPLtCFTlt8,o4HCFTl_NOPLgCFT2"8*_6HCFT2

* • 9NOPLtCFT3t8.96HCFT3tNOPLtCSTlt8.I6HCSTlt

* NOPLgCST2t8.t6HCST2tNOPLtCST3t8-o6HCST3 )

CALL CPLOT(39HOLD1,20, t2HPLtNOPLtWSTI_8*t6HWST1tNOPLgWST298"9
* 6HWST2tNOPLtWST3_8*o6HWST3 )

CAL_ CPLOT(6oHOLD2t20,t2HPLgNOPLtWT98,92HWTtNOPLtWHt8*t2HWHt
* NOPLtCFL98,o3HCFLoNOPL_CHt8*o2HCH )

CALL CPLOT(3tHOLD3_20,_ZHPL_NOPL_PPT_8*_3HPPT_NOPL_CPT,8-_3HCPT_

* NOPL_CG_8,_2HCG )

DO 601 • 1,NOBD

HOLD(I) = BD(I)

HOLDI(I) • BD(I)

60 CONTINUE
CALL CPLOT(6_HOLD_20._2HBD_NOBD_WM_8,_2HWH_NOBD_WD_8-_2HWD_

* NOBD,PH_8,_2HPN_NOBD_PD_8*_2HPD )

CALL CPLOT(6_HOLDI_20=_2HBD_NOBD_CFH_8,_3HCFM_NOBD_CFD,8=_3HCFD_
* NOBD_CH_8,_2HCN_NOBD_CD_8-_2HCD )

DO 5OI • 1,NOTHR

HOLD(I) = THER

50 CONTINUE

CALL CPLOT(2_HOLD,20,_6HTHER_NOTHR_CNR_8,_3HCNR_NOTHR_CTH_8"'

* 3HCTH )

RETURN

END
$DATA

5 7 4 7

I0

.51E-6 ,63E-_ ,86E-6 3,39E-6

1.E-3 2,E-3 I,E-4 6.E-4

5.E3 3,2E3 I,E2 27,7E3

_00. 2,0E3 I0.0 5.9E3

5,E3 2,0E3 2,E3 2,0E3

7,5E-5 7,5E-5 0,00 1,5E-6

5.0E-8 5.0E-8 0,00 9.0E-8

7*5E÷3 7.5E+3 7.5E3 l*0E+6

5*0E+O 5=0E+O 5,0E0 7°5E+0

5,0E-5 5,0E-5 5,E-5 l*OE-6

I,OE-7 I.OE-7 1.E-7 2.0E-7

15,0E3 lfi,OE3 15,E3 25.E+3

3.0E+1 3.0E+1 3.0E1 5.0E+1

1,0 2,0 5,0 I0.

50. I00,

• 1E-3. ,2E-3 ,5E-3 1,E-3
I,0 2.0 5,0 i0,

2860
2870

2880
2890

2900

2910

2920

2930
2960

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080
3090

3100

3110

3120

3130

3160

3150

3160

3170

3180

3190

3200

3210

3220

3230

7 32'40

3250

10=6E-6 3260

1,E-1 3270

1,_3 3280

2, 3290

2,E3 3300

0,00 3310

0.00 3320

3.E6 3330
20.0 3360

1,E-6 3350

2,E-7 3360

27.5E3 3370
5.5E1 3380

20, 3390
3600

3610

20, 3620
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EXHIBIT AZ. 2-4 (continued)

50, 100.
10, 20. 50, I00.

500, I,E3

I0, I.£2 1.E3 I.E4
I.E6 I,£7 1,E8 I,E9

14, ,01 2,E4 25.
2, 8,75 2.3E-2 2,5E4
2. 2, ,21E-5 2.22

4,E6 O, 460, 1,

2.22 ,66 2,E6 O.
1- I0. ,07 O.
O, i0, 2, I.

3.33 1250. .125 I.E4
250, ,125 I,E4 I0,

3430
200, 3440

345O
I.E5 3460

l.El0 3470
2. 3480

20, 3490
•66 3500

•039 3510
350. 3520
I00, 3530
3.33 3540
I0, 3550
40. 3560
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APPENDIX AZ. 3

OUTPUT DATA PROGRAM

FUNCTION

The function of the Output Data Program is to provide parametric

plots as a function of transmission wavelength and information rate of

the optimum values of the major system parameters and the corre-

sponding system weight, power, fabrication cost and component cost

burdens.

D ES C RIP TI ON

Exhibit AZ. 3- l is a flow chart of the Output Data Program.

The input information required for the program is the systems

burdens data and the optimum value of the major system parameters,

dTo' dRo' PTO' @RO' as a function of information rate as deter-

mined by an optimization program.

Exhibit AZ. 3-Z contains a listing of the plots generated by the

c omp ute r.

Exhibit A2.3-3 contains a listing of the Fortran Output Data

Program.

AZ.3-1 6 March 1967
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EXHIBIT AZ. 3-I
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EXHIBIT AZ. 3-2

OUTPUT DATA PROGRAM COMPUTER PLOTS

All plots versus transmission wavelength.

System Weight Burdens System Fabrication

W d vs R vs R B
T B CST

vs R vs R BWd R B C8 R

WQT vs R B CNT vs R B

WQR vs R B CNR vs R B

W T vs R B CFL vs R B

W H vs R B C H vs R B

W M vs R B CFM vs R B

W D vs R B CFD vs R B

WST vs R B CFT vs R B

WSR vs R B CFR vs R B

W A vs R B CFA vs R B

W B vs R B CFB vs R B

System Power Burdens

Cost Burdens

System Component Cost Burdens

PQT vs R B CdT vs R B

PQR RB vs R Bvs CdR

PPT vs RB vs
CQT R B

PM vs R B vs
CQR R B

PD vs RB CPT vs R B

PA vs R B

C M vs R B
PB vs R B

C D vs R B

CST vs R B

CSR vs R B
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EXHIBIT A2. 3-2 (continued)

System Cost Variables

C T vs R B

C R vs R B

C G vs R B

CQ vs R B

C V vs R B

C A vs R B

C B vs R B

C S vs R B

AZ. 3-6



EXHIBIT AZ. 3-3

C OUTPlJT OPT I:",IZATION '.IFTHODOLCGY_n[ITP[!T DATA PROGRA"

SUBROI.;TI>_E O-JTat;T(DT,q,DRO,PTO_THEqO_RR)

REAL KTHT, KDT, MT, NT,KTHR, KDR, MR, NR, KAT,KV'AT,KPOT, KAR

REAL K'VAR,KPQR, KPT, K'I'ZT, KH, K×, KE, KFM_, KM, KPM, KFD, KD

REAL KPD, KST,KWST_ KSR,K'._'SR , KS, KHT, KJT, KGT., KMT, KNT, KOT

REAL K_'_R, KNR, KQR,LAVBDA,LMPDI,K,KN

CO""ON/TRANT/ KTHT;KDT,CKT,':,.'KT,_'-'T,.'IT

CO"_"_DN/PCAMT/ KTHR,K!bR,CKR,WKR,"R,FIR

{'D"M._.,*41T_CTSI KAT,K'.'sAT,KPOT,C^IT,_"_,T,OT

CO'4"!ON/RbCTS/ KAR, KWAR , KPGR, CA r_ ,"'nR ,QR

COMMO'4/TRNSnl/ KPT, KWT, KH,KX , KE,CKP,,CKH,WKP , WKH,PK T,GT,HT

CO"lU4ON/EQ'_4OI)/ KFV, K ''_ ,KI DM ,CKtl ,WK"

C.'D'_MCN/E ODMD / KFD,KD,KDD,CKD,WKD

CO:4'40,".'/TRNPS/ KST,K';;ST,CKF,!'!KE

COv'MON/RCVPS/KSR tKt'_SR, CKF,V;'<F

CO'IMON/GENRL/ KS,LN'iI_DA,LMi#DI,R,TAUT,TAUR,TAUA,ETA,SN,QB

COIqMON/OUTPT/ KHT,KJT,KGT,KMT,KNT,KIg'T,KMR,KKR,KQR

"IR [ TE ( 6,1 ) RP,,DTO,DRO,PTO ,TFIFRO

WOT =KIbT*DTO_*MT + WKT

WOe =KDR_DRO_NR + WKR

"tOT ='."qT + K!'!AT*KDT *DTO'_*_!T

'VOR =wqr"4 + KWAR*KDR *DRO,_-X'MR

WT = KWT*PTO**HT + WKP

WFI = PTD*KX * (I.-KF) /KF + WKH

!,!,4 = K"."*Plq + '.fK_-_

WD = KD*RB + WKD

WST = KWST*IK.PM_KM*RB + KPM*WKW + PTO/KE + KPOT* (WBT + KWAT*KDT

• *DTO*_NT) ) + WKF

WSR = KWSR_IKPD_KD*RB + KPD*WKD + KPQR*IWBR + KWAR*KDR*DRO**NR))

• + WKF

WA = WDT + WQT + !^IT + WH + WM + WST

Wm = WDP + WOe + WD + WSR

WRITE (6,2) '.VDT,WDR,I*IQT'WQR,WT,WH,WM,'.'!D,WST,W,£R,WA,WB

PQT = KDQT*IWnT + KW,_T*KDT*DTD**NT]

PQR = KPOR*IWBR + KWAR_KDR*DRO**Nm)

DOT = _TD/KE + r)KT

P_.'_ = KP _*.'_*( KL4*RB + WKH )

PD = KPD*(KD*RB + WKD)

PA = PQT + PPT + P','I

PR = DOP + PD

WRITE(6,3) PQT ,PQR, PPT ,_PM,PD ,PA,PB

CTHT = KTHT * DTO**"4T + CKT

CTHR = KTHR * DRO_-_MR + ck'r_

CNT = CAT + KAT_(DTrb/L'_Mr_rb/_)_*QT

CNR = CAR + KAR*THERO**(-QP)

CFL = KDT_-PTQ-'4-*GT +CKP

CH = PTO*KH,'4-(I.-KE)/KF + CKH

CF",! = KFH_oP, + CKM

CFD = KFD*PB + CKD

CFT = KSTI(KPM*(KM*i_B + WKM) + PTO/KE + KPQT*(WBT +KWAT*DTO**NT))

• + CKE

CFR = KSR*(KPD*IKD*RB + WKD) + KPUR*IWBR + KWAR*KDR*DRO*_NR))+ CKF

CFA = CTHT + CNT + CFL + CH + CFM + CFT

CF_ = CTHR + CNR + CFD + CFR

WRITE(6,4) CTHT ,CTHR ,CN T ,CIHR ,CFL ,CH ,CFM,CFD,CFT ,CFR,CFA ,CFq
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EXHIBIT A2. 3-3 (continued)

CDT = CTt_T + Kc._'.'!D _

cr)r_ = CTHP + KS*..vDq

COT = C_T + k'_*',_'_T

C_o = ("Am + k'c-_Wmo

CPT = CFL + CH +Kc,_(','T + '.'H)

C% = CF_ * KC*',.'b

CST = CFT + Kc,*':!ST

C_P = CFP + v c._,..,_p

WRITE(6,5) CDT 9CDR, COT ,C(_R .,CPT, CN',,CD ,COT ,CSR

KHT = I<'.c_'F,-k'l..'T

KJT =(K&*Ku.'._T + KST)/KF" +(K.C.*_Y .* k'H )'_'('i.-KF)/KF

KGT = k'PT

k"_.'T = k"THT

KNT = KDT*(K._*(1. + KWAT) + KPQT*K',"AT*(KST + K¢_-K',.VST))

KQT = K/_T/L./_MBOA**OT

K'_r_ = KTHR

KNR = KDR*(KS*(I. + KWAR) + KPCQ*KW#.R*(KF_R + KS*KWSP))

KOR = KAR

CTO = KQT*DTO**QT +K'4T*DTO**MT + k'NT*DTO**NT

CRO = KIVR*DRO**;4R + KNR*DRO**NR

COO = KOR/THERO_OP

CGO = KGT'XPTO**GT + KHT*PTO**HT +KJT*PTO

CV = CGO +('TO + CQO + CR_

('r_ = CV + CFA +c_'r_

CA = CGO *-('TO ÷ CFA

Cq = COr_ + CRO +CF m

WRITEr6,6) CTO,CRO,CQO, CGO,CV,CS,CA .,CB

1 FORMAT(35H OPTIMUM SYSTEM PARAtCFTERS RB = ,E]2.5,gH DTO =

• EI2.5,qH ()RO ,EI2.5,9H PTO = ,EI2.5,1OH THERO = ,E12.51/)

2 FORMAT( 23H OPTIHUM WEIGHT BURDENS, 5H WDT.,E15.6,SH WDR,E15.6

• ,5H WQT,EIS.6,5H WQR,EIS.6,5H WT,EI5.6/23X, 5H WH,

• EI5.6,SH WM,EIS.6,5H WD,EIS.6,SH '.qST',E 15.6,5H WSR,,EI5.6/23X,

• 5H WA,EI5.6,5H WF_,E15.61/)

B FORMAT( 23H OPTIMUM POWER BURDENS , 5H PQT,E15.6,5H PQR,E15.6

• ,5H PPT,EI5.6,,5H PM,_EI5.6,SH PD,FlS.6/23X,5H PA,EIS.6,SH

• Pm,FI 5.611)

4 FOR_4AT(3_H OPTIMUM FABRICATION COST BURDFNS,IOX,SH CTHT,E15.S,BH C

• THR,E15.6,SH CNT,E15.6,SH CNR,F15.6/2_X,SH CFL,E15.6,SH CH,

• ElS.6,SH CFM,.EI5°6,5H CFD,EIS.6,SH CFT,EI5.6/SH CFR,ElS*6,5H

• CFA,FIB.6,BH CFB,FIS.6//)

5 FORMAT(38H OPTIMUM SYSTEM COMPONENT COST bURDENS,SX,5H CDT,EI5°6,

• SH CDR,E15.6,SH CQT,E15.6,,SH CQR,ElS.6/23X,5H CPT,E15.6,5H C

• M,EI5.6,5H CD,EI5.6,5H CST,E]5.6,SH CSR,EI5.6//)

6 FORMAT(28H OPTIMUM SYSTEM COST BLJRDEN.q,]SX,SH CTO,EIS.6,SH CRO,

• EI5.6,SH CQO,EIS.6,SH CGO,EI5.6/23X,5H CV,EIS.6,SH CS,EIS.6,

• SH CA,FI_.6,SH C_,F]S.6///)

PCT!Jr_N

FND
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APPENDIX A2.5

THERMAL NOISE LIMITED DIRECT DETECTION OPTICAL RECEIVER

OPTIMIZATION PROGRAM (TOP) WITHOUT COMPONENT STOPS

FUNCTION

The function of the TOP program is to determine the optimum

values of the major system parameters as a function of information

rate for a thermal noise limited direct detection optical receiver.

DESCRIPTION

Exhibit A2. 5-I is a detailed flow chart of the TOP optimization

program. The input information required for the TOP program is the

systems burden data, the system parametric data, and the initial

conditions data. Exhibit A2. 5-2 contains a listing of the Fortran IV

TOP program.

A2.5-i 6 March 1967



T
I

I

_r

+

c
p.

u--

c

÷

i

E

E

E

li

+

7"

+

&

o

I--

tl

c

c 7o
+ _

i

_ 1.1o

II

Y_oloi

e-.

o

ii

ee
c

ee

c

i

c

c

+

E

i

E

E

u

+

-i "_
J _

-i
i

I

>

0
o

o

I

Z
_J

w

• i

II
I

I
u'l

_ u,-

__ u_ ?.---

w _

Z "

I I •

0- I r---_

m

--.2.'._..

I ,

I-- E
©

3:

+

(

+

i

+

v_

i

c

J

I"
c

J

._o

:= -

21 °
__ + _

g

_( .=_1 x

+ Me

i-- "1

ii a--

Z

_2_ _.

g_ 0
U U

-J

__ z__
_ z
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EXHIBIT A2. 5-2

CTOP OPTIMIZATION METHODOLOGY TOP PROGRAM

REAL KTHT, KDT, MT, NT,KTHR, KDR, MR, NR, KAT,KWAT,KPQT, KAR

REAL KWAR,KPQR, KPT, KWT, KH# KX, KE, KFM, KM, KPM9 KFD, KD

REAL KPD, KST,KWST, KSR,KWSR, KS, KHT, KJT, KGT, KMT, KNT, KQT
REAL KMR, KNR, KQR,LA_BDA,LMBDI,K,KN

COMMON/TRANT/ KTHT,KDT,CKT,WKT,MT,NT

COMMON/RCANT/ KTHR, KDR,CKR,WKR,MR ,NR

CO_'MON/TACTS/ KAT,KWAT ,KPQT, CAT,WBT,QT

CO'_MON/PACTS/ KAR ,KWAR ,KPQR ,CAR ,WBR ,QR

CO'4_._ON/TRNS_/ KPT,KWT,KH,KX,KE,CKP,CKH,WKP,WKH,PKT,GT,HT
CO_ONIEQMOD/ KF_,KH,KPM,CKM,WK_

COHMONIEQDMD/ KFD,KD,KPD,CKD,WKD
CO_MON/TRNPS/ KST,KWSTtCKE,WKE
COHMON/RCVPS/KSR,KWSR,CKF,WKF

COMMON/GENRL/ KS,LANBDA,LMBDI,R,TAUT,TAUR,TAUA,ETA,SN,QB

COMMON/OUTPT/ KHT,KJT,KGT,KMT,KNT,KQT,KMR,KNR,KQR

READ(5,]IO0) KTHT,KDT,CKT,WKT,MT,NT
WRITEI6,12OO}KTHT,KDT,CKT,WKT,MT,NT

READ(5,]IO0) KTHR,KDR,CKR,WKR,MR,NR

WRITEI6,12OI)KTHR,KDR,CKR,WKR,PR,NR
READ(5,1]O0) KAT,KWAT,KPQT,CAT,_!BT,QT

WRITE(&,I202)KAT,KWAT,KPQT,CAT,WBT,QT

READ(5,110O) KAR,KWAR,KPQR,CAR,WBR,QR

WRITE(6,1203)KAR,KWAR.KPQR.CAR,WBR,QR

READ(5,1100) KPT,KWT,KH,KX,KE,CKP,CKH,WKP,WKH,PKT,GT,HT

WRITE(6,1204)KPT,KWT,KH,KX,KE,CKP,CKH,WKP,WKH,PKT,GT,HT
READ(5,1100) KFM,KM,KPM.CKM,WKM

WRITE(6,1205)KFM,KM,KPM,CKM,WK_'

READ(5,1100) KFD,KD,KPD,CKD,WKD

WRITE(6,1206)KFD,KD,KPD,CKD,WKD

READ (5,1100} KST,KWST,CKE,WKE

WRITE(6,1207) KST,KWST,CKE,WKE

RFAD(5,1100) KSR,KWSR,CKF,WKF

WRITE(6,12OS)KSR,KWSR,CKF,WKF

WRITE(6,I?IO}H,C,O,SMK,TF,RL

READ(5,1100) H,C,O,SMK,TE,RL

READ(5,]IO0) KS,LA!_BDA,LMBDI,R,TAUT,TAUR,TAUA,FTA,SN,QB

WRITE(5,12OO}KS,LAMBDA,LMBDI,R,TAUT,TAUR,TAUA,ETA,SN,QB

KM = (.3*ETA*TAUT*TAUA*TAUR*Q/((H*R**?)*C*LAMBDA))**2

* *(2.*RL}/(SMK_TE*SN)
K_T = KTHT

KNT : KDT*(KSW(I.+KW_T)+ KPQT*KWAT*(KST+KS*KWST))
KQT = KAT/LA_qRDA*WQT

K_'IR = KTHR

KNR = KDR*(KS_(],+ KWAR) +KPQR*KWAR*(KSR + KS*KWSR))
KGT = KPT

KHT = Fg_KWT

KJT = KS*(KWST/KE + KX*(I.-KE)/KE} + KST/KE + KH*(I.-KE)/KE
KQR = KAR

WRITE (6,2000)KN,K,KMT,KNT,KQT,KMR,KNR,KQR,KGT.KHT,KJT

READ (5,1100} DTI,DRI,PTI,THERI,CVI,CVMIN

CV : CVl

DELCV = CVIIO,
DT = DTI

PT = PTI

0
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EXHIBIT A2. 5-Z (continued)

l)r_ = DO l

THFO = THFR!

WRITE (6,2.qq1) T_IER,DT_DR,PT,CV

8 PCTPDT =(>IT*KMT*DT*_4T + ,qT*K,'IT*DT_*NT +QT*KQT*DT_*QT)/DT

10 PCGPPT =IGT*KGT_OT**GT + HT*KHT*PT**HT)/PT + _JT

FI = DT*PCTPF)T

F? = ?.*PT * PCGPPT

T -- F1 - F2

IF{ (F]/F2) .CT. .Onm o.m_ .I_N_. (FI/F?) .LT. 1.mr'm'_C_ ) G_ TO 6G

PCGPT2 = (GT*IGT-],)*KGT_PT**GT +HT'_(HT-I.)_KHT_r-'T**HT)/PT**?

DFLPT = T/IP.*(PT*PCGPTP +PCGPDT))

XX× = OT + DELOT

IF(XXX .LT, n,) XXX = PT/2,

PT = XXX

GO TO In

60 CONT I NLIE

80 PCRPDR = (qR*KMR*DR*_'!'."R ÷ NR_'K'_R_DR_*.,XP)/DR

F] = rbT*PCTPDT

F2 = .qP*PCRPDR

_,t = F1 - F2

IFIIF1/F2) °GT, ,9°999 r_ ,AND° (F'_/F2) ,LT, l,Or)O.")05 )GO TO 100

PCRDR2 =(MR*(P4R-I°)*K'.!R*DR*_'qR +,_jR-x_(I".R-1.)*KNR*DR**NR)/DR**2

DELDR = W/(DR*PCRDO2 + PCRPDP]

XXX= Dm + DELF)P

IF( XXX ,LT° t_o ) XXX = DP./2,

r)r_ = XXX

GO TO £_

100 CT = K[4T*DT_*KT +KNT*DT*_NT +KOT_DT*X'CT

CR = <MR*DR***.12 +K,'iR*DRX-*NP,

CG = KGTI_PT}*GT + KHT_-PT**HT + KJT_-DT

CO = KOR'X'THF_-*(-QP)

CVA = CT+ c'p + CG + CQ

IF((CV/CVA) ,GT, .09095 ,AND, (C'V/CVt) °LT, ],t_q'_.q5 ) GO TO 2£h

PCTPDT = (:4T*KMT_DT_*'._T + NT*KNT_DT_*NT + C)T_FqT*DT**OT)/DT

PCRPDR = (v'R*K"4R*DR**"'o + ,_:R_,FNm_D_*_;-NP )/DR

PCGPPT = (GT*KGT_PTK*GT + FtT*KHT*°T¢('*HT )/PT + KJT

PCTDT2 = (r4T*KVT_(VT-],)'_!)T**!'AT + NT*(NT-!,)*KNT*DT**NT 4- OT*

• (QT-!.I_K'3T_DT**QT)IDT*'_2

PCRDR2 =(_.IR*(MR-!°)*Kb'I_*DIR*'4-NI-I + i'_R*(P.IR-I.)*KNR_DR*_NI_)IDR**p

PCGPT2 =(GT*IGT-I°)*KGT*PT**GT + FIT*(HT-I.)*KHT*PT**HT)IPT**2

PPTPDT =(DT*PCTDT2 +PCTPDT)/(2.*PCGPPT÷ 2°*PT_r)CGPT2)

PDRPDT = {'.)T*PCTDT_ + PCTPDTII(P('RP._R 4- _R*PCRP, R2)

DELDT : (CV-CVA)/( PCTPDT +PCRPDR_Pl)Rpr'.T +DCGP°TWPPTPDT)

XXX : r)EL_T +r_T

IF( XXX ,LT, r_, ) XXX = r_TI2,

DT = X_(X

GO TQ

2RO r_T f) = DT

PTO = F_T

DRO = DR

THERO : THFR

RR = KN*DTO**2 *DRO**2 *PTC

CALL OUTPUT(DTO,DRO,PTO,THERO,RR)

fF(CV °LF° CV'IIN _0 TO "_70

IFIC'V .FQ. r),_:'L(" v _f-LCV = IhcLCV/ln.

rv = CV - rbFI CV
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EXHIBIT A2. 5-Z (continued)

370 STQP

I19_ F_R"AT (AFI2.5)

1200 =OR4#T (15H1 TRANSMITTER ,SH KTHT,E]3.5,5H KDT ,EI3.5,5H CKT ,F]3

*.5,5H ?/KT ,E1_.5,511 "T ,EI3oS,SH NT ,EI3.5/]SH ANTENNA //)

120] FOmMAT (15H RCCFIVER ,5H KTHR,E13.5,5H KDR ,E1%.5,5H CKR ,El3

*.5,5H 'rKR ,E1_.5_5H _R ,EI3°5,5H NR ,E13.5/15H ANTENNA //}

1202 FORVAT (15H TRANSMITTER ,SH KAT ,EI3.5,5H KWAT,E13.5,5H KPQT,E13

*.5,5H CAT ,513.5,5H WBT ,E13.5,5H QT ,EI3.5/15H ACQUISITION I
* 15H AND TRACK /

15H SYSTEM //)
1203 FORMAT (15_1 RECEIVER *SH KAR *E13.5,5H KWAR,E13.5,5H KPQR,E13

*.5_511 CAR ,EI3.5,5H WBR ,EI3.5,SH QR ,EI3.5/15H ACQUISITION /

* 15H AND TRACK

* II5H SYSTEM //)

1204 FORMAT (]5H TRANSMITTER ,SH KPT ,EI3.5,5H KWT ,EI3.5,5H KH ,E13

*.5,5H KX ,EI3.5,5H KE _FI3.5,5H CKP ,EI3.5/15X_5H CKH ,EI3.5,SH

*WKP ,EI3.5,5H WKH ,EI_.5,SH PKT ,EI3,5,5H GT ,EI3.5,5H HT ,E11°5

* //)
1205 FORMAT (15H MODULATION ,SH KFM ,E13.5,5H KM ,EI3.5,5H KPM ,El3

*.5,5H CK_I ,EI3.5,SH WKM ,EI3.5115H EQUIPMENT I/1
1206 FORMAT (15H DEMODULATION ,5H KFD ,EI3,5,5H KD ,E13,5,5H KPD ,E13

*.5,5H CKD ,EI3.5,5H WKD ,EI3°f/ISH EQUIPMENT //)

1207 FORMAT (]SH TRANSMITTER ,SH KST ,EI3.5,SH KWST,E13.5,SH CKE ,E13

*.5,5H WKF ,EI3.5/15H POWER SUPPLY //}
1208 FORMAT (15H RECEIVER ,SH KSR ,EI3°5,SH KWSR,EI3.5,SH CKF ,El3

*,5,5H NKF ,EI!,5/IRH POg'ER 51'PPLY //}
1209 FORMAT ( 7H KS = _E13.5,11H LMARDA = _F13.5913H LAMBDA I = ,E13

*.5,6H R : ,EI3.5,1OH TAU f : ,FI3.5//IOH TAU R = ,EI3°5,10H TA

*U A = _E13.5, 8H ETA = ,EI!.5,IIH (S/N) : ,EI3.5,?H QB : ,Eli.
"5/2H1 }

1210 FORMAT(7H H = ,E13.5,TH C : ,E13.5,TH Q = ,E13.597H SMK : ,
*EI3.5_TH TE = ,E13.5,TH RL : ,E13.5//)

2000 FORMAT( 7HI KN : ,E18.B,TH K : ,E18.8,7H KMT = ,E18,8,TH KNT : ,
* FI8.8,TH KQT = ,E18.8/ 7H KMR : ,EI8.8_TH KNR : ,EI8.8,TH KQR = ,

* E18.B,TH KGT : ,E]8.8, ?H KHT : ,EIB.8/?H KJT = ,E18.8///)

2001 FCRMAT(53X,23HINITIAL CO*IDITIONS DATA//IlH THETA-R = ,E12.5,

* 6H DT : ,EI2.5,6H DR = ,EI2.5,6H PT : ,EI2.5_6H CV : ,E12.5// )
EN9
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APPENDIX A2.6

HETERODYNE DETECTION OPTICAL RECEIVER OPTIMIZATION

PROGRAM WITHOUT COMPONENT STOPS {HOP)

FUNCTION

The function of the HOP program is to determine the optimum

values of the major system parameters as a function of information

rate for a heterodyne detection optical receiver.

DESCRIPTION

Exhibit A2.6-1 is a detailed flow chart of the HOP optimization

program. The input information required for the HOP program is the

systems burden data, the system parametric data, and the initial

conditions data. Exhibit AZ. 6-Z contains a listing of the Fortran IV

HOP program.

A2.6-I 6 March 1967
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EXHIBIT AZ. 6-2

CHOP ODTI 4IZATION METHODOLOGY HOP PROGRAM

REAL

R r- ,,.L

p _ #.L

RF_L

COMMON/TRANT/

CC,'4_/,_)N / pC AN T /

CO.','_.ION / T ACT S /

C O'.!;/O,".4/RACTS/

CO.'.IMOiI / T Ri4 SM /

C Qi.' ."4ON / E L_'-'IOL) /

CObtMON/EL_DMD/

COMMON/TRNPS/

KTHT, KDT, ',IT, NT,KTHR, KDR, MR, NR, KAT,K'!AT,KPOT, KAR

K'"AR,KPQR, KDT, K'"T, KH, KX9 KE, KFM, KM_, KPM, KFD_, KD

KDD. KST,KWST, KSR,KWSR, K.£9 KHT, KJT9 YGT9 KMT9 KNT9 KQT

K*'',, Ki'qR, KQr4',L/t'_r_D/'.,L"_R_P,I,KgKN

KTHT, Kr)T ,_CKT ,WKT,_"._T ,NT

KTHR ,, KDP _ CKq 91#KQ _b'P ,_NR

KAT,KWAT, KDQT , CAT ,'WqT ,QT

KAR, KWA ° , KPOR , CAR ,_YqR ,OR

KPT , K,_T , KH,KX , KE,CKP ,CKH, WKP 9WKH 9PKT ,GT,HT

K F t,._,, K:'_, K P;"1 ,CKM 9WKM

KFD, KI.), KP[) _CKD 9WKD

:<ST ,KWST ,,CKE,WKE

COM%ION / RCVD S / k'.SR ,_KWSR ,_CKF, t,"< F

COMMON/GENRL/ K£,LAMBDA,LHqDI,R,T/_tIT,TAIIR,TAIIA,,ETA,SN_,QB

CO'.IMON/OHTPT/ KHT, K JT ,_KGT, K."/T ,KNT ,_KQT ,_KqR , KNR ,KQR

PEAD( =_,_11 O0 KTHT, KDT , C K T ,,'.,!K T ,_._T _'4 T

WR I TF( 6, ] 20,01KTFT ,KDT ,_CKT ,_t'!K T ,UT ,_'!T

RFAD( _,_,l ] OO) KTt4R, KDP, CKR ,_WKR, PP ,NR

WRITEI6,12nl)KTHR,KDR,CKR,WKR,r.,_,,',.!R

RFAD(.5,1 ] 0(1) K AT, KWAT, KPQT ,_CAT ,_',,,'RT ,QT

We ! T E ( 6,1202 ) K/_ T _,K t';/_ T, KPQT, CAT, ";=_ T ,,QT

READ(5_,llO0) KAR ,_KWAR ,, KPQR, CAR, WRR, QR

WR I TE ( 6 , ] 203 )KAR ,KWAR ,KPQR, CAR ,WBR ,QR

READ(5,1]OO) KPT,KWT ,KH,KX, KE,CKP,CKH,WKP,WKH,PKT ,GT,HT

WR I TE ( 6, ] 20_ 1KPT ,KWT ,_KH ,KX ,KE,CKP _,CKH ,__,,IKP _ WKH,_PKT ,GT ,tiT

RFAD(_,I 1_0) K F" _K',A, KP'_, Cy M ,_Wk" i':

WR I T F ( 6,120 _, I KF _''_,K _-' , _.P_' ,,CK ',_ , '*,IK v.

Pr.&D(=,_l ]OO) KFm,,_KD,KIDD_CKD,,WKD

"!R I T E ( 6 _, 12Q6 ) KFD,KD _ KPD, CKD,_WKD

R_AD (6,11q_1 KST,KWRT.CKF,WKF

WRITEi6,]2D7) KST, K'.'/ST ,CKE ,WKE

RFAD(S_]]O0) KSR _,KWSR, CKF,, WKF

WR I TF( 6 , 1.20£ ) KSR,KWSR, CKF,t'.IKF

READ(5_1100) H,C

WRITE(6,12]O) H,C

REAO(5,]]O0) KS, LAi4BDA, LMRD I ,R, TA_.IT, TAtlR, TAIIA ,, ETA, SN ,QB

WR I T E ( 6, 120q )KS ,LAMBDA ,LrCnD I ,R, TAUT , TAIIR, T AlIA, FTA , SN ,QR

KN = .m*FTA*TAUT*TAUA*TAUR/((R**2 * H)*C *LAMRr)A*SN)

K = (l.22F-2q*P**2)* OR*LA_"PDA*L_,'_DI/T_tIT

K_'-4T = KTHT

KNT = KDT*(KS_(1.+KWAT)+ KPQT*K!,q_T-X'-(K_.T4-KS_KWRT))

KQT = KAT/LAM_,DA**QT

K,_I"R = KTHR

KNR = KDR*(KS-X-(I.+ KWAR) +KPORx-KWAR*(KSR + KS*KWSR))

KGT = KPT

KHT = K£*KWT

KJT = KS*(KWST/K_F. + KX*('I°-KE)/KE) + KST/KE + KH-_(]..-KE1/KE

KQR = KAR

WRITE (6 , 2(qO0 ) KN,K,KMT ,KNT ,KQT _ KMR,KNR,KQR,KGT _KHT,KJT

RFAD (S,llOq) DTI,DRI_,PTI,THFRI,_CVI,,CVMIN

CV = CVl

r)FLCV = CV/ln.

DT = DT I

r_T = PTI
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EXHIBIT AZ. 6-Z (continued)

DR = DRI
THER = THERI
WRITE (6_20.01) THER,DT,DR,PT,CV

8 PCTPDT =(HT*KMT*DT**MT + NT*KNT*DT**NT +QT_KDT*DT**CT)/DT
10 PCGDPT =(GT*KGT-_PT**GT + HT*KHT*PT**HT)/PT + KJT

F1 = DT_PCTPDT
F2 = 2.*PT * PCGPPT
T = F1 - F2
IF((FI/F2) .GT. .9q9995 .._ND. (FI/F2) .LT. 1.0C0005 ) GO TO 60

PCGPT2 = (GT*(GT-I.)*KGT'_PT**GT +HT*(HT-I.)*KHT*PT**HT)/PT**2

DELPT = T/(2.*(PT'_-PCGPT2 +PCGPPT))

XXX = PT + DELPT

IF(XXX .LT. O. ) XXX = PT/2.
PT = XXX

Gn TO IO
60 CCNT l NI,JE

80 PCRPDR : (KR*K"4R*DR**MR + NR*KNR*DR**NR)/DP
F] = DT*PCTDDT

F2 = DP*PCRPDR

W : F1 - F2

IFI(F1/F2) .GT. ,999995 .AND, (F1/F2) ,LT, 1,000005 )GO TO 100
PCRDR2 :(MR*I[_.R-1,)*KB4R*DR**MR +NR*(NR-I.)*KNR*DR**NR)/DR**2
DELDR = W/IDR*DCRDR2 + PCRPDR)
XXX: DR + DELDR

IF( XXX ,LT, O, ) XXX : DR/2,
DR : XXX

GO TO RO,

100 CT = KMT*DT**HT +KNT*DT**NT +KOT*DT_*OT
CR = K"4R*DR**"AR +KNR_DR**,NP,
CG = KGT*PT**GT + KHT*PT**HT + KJT*PT

CQ = KQR*THER**(-QR )

CVA = CT+ CR + CG + CQ

IF((CV/CVA) ,GT, ,99995 ,AND, (CV/CVA} ,LT, 1,00005 } GO TO 280

PCTPDT = (MT*KMT*DT**MT + NT*KNT*DT**NT + QTWKQT*DT**QT)/DT

PCRPDR : (bIR*KMR*DR**MR + NR*KNR*DR**NR )/DR

PCGPPT : (GT*KGT*PT**GT + HT*KHT*PT**HT )/PT + KJT

PCTDT2 : (MT*KMT*(MT-I.)*DT**iVT + NT*(NT-I.}*KNT*DT**NT + aT*

• (QT-I • )*KQT*DT**QT )/DT**2
PCRDR2 :(MR*(MR-I,)*KWR*DR**MR + I'IR*(NR-I. )*KNR"X-DR**NR)IDR**2

PCGPT2 =(GT*(GT-I.)*KGT*PT**GT + HT*(HT-I,)*KHTWPT**HT)/PT**2
PPTPDT =(DT*PCTDT2 +PCTPDT)/(2.*PCGPPT+ 2°*PT*PCGPT2)

PDPPDT : (DT*PCTDT2 + PCTPDT)/(PCRPDR + DR_PCRDR2)
DELDT = (CV-CVA)/( PCTPDT +PCRPDR*PDRPDT +PCGPPT*PPTPDT)

XXX = DELDT +DT

IF( XXX .LT, O, ) XXX = DT/2,

DT = XXX

GO TO 8

280 DTO = DT
PTO = I::)T
DP,O = DR
THEP, O = THER
RR : KM'_DTO**4*DRO**a.*PTO**2

CALL OUTPUT (DTO ,DRO _PTO ,THERO,RB )

IFICV ,LF, CVMIN) GO TO 3"70

IF(CV .EQ, DELCV} DELCV = DELCV/]O,

CV = CV -DELCV
GO TO R
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EXHIBIT AZ. 6-2 (continued)

370 STOP

1100 FORMAT (6F12.5)

12OO FORMAT (15HI TRANSHITTER

_._,5H '.4KT ,EIB.5,SH 14T

1201 FORMAT ( 151-t RECEIVLR

*.5,5_I WKR ,EI_..5,SH MR

1202 FORr._AT I]5H TR._,NSMITTF:R

,5H KTHT,_Flq.5,,SH KDT ,E]:,.5,=,H CKT ,FI3

,E1 "_.5 , £,H NT ,E'I 3.5/]_H ANTENNA //)

,,SH KTHR,FIB.B,5H KDR ,EIB°5,5H (-KR ,F'I'B

,El?.5,SH NR ,EI'_.5/15H ANTENNA //)

_SH KAT _Elq.695t--t KW/!T_F]q.5,_SH KPQT,_Flq

*.5.5H CAT ,EI3.5,5H '*'RT 9FIB°5,r'H QT ,FIB.'i/lSH ACQ[JI£1_'ION /

_" 1BH S YSTFT'.' // )

1203 FORMAT (I£H RFCFIVER ,SH KAR ,El'4.5,SH KI4AP.,EI_.£,£H KDDR,rlq

*.5,5H CAR ,EI_.5",SH WPR ,FI"_.5,SH QP ,FI3°5/]=H ACOIII£ITION /

* lr'H AND TR/'CK

* / 1 :',H SYFTFW //)

120_. FOR*."AT (I5H TRANSMITTER ,5H KPT ,EI3°5,5H KWT ,E13.5,5_I KH ,F]'_

*°5,511 KX ,E13.5,,SH KE ,FI3o5_H CKP ,FIB.5/]_.X,5H CKH ,FIB.B,BH

*WKP ,EIB.5,5H WKH ,EIB.5,5H PKT ,E13.5,51l GT ,E]B.5,5H HT ,E]'_.5

* II)

1205 FORr'4AT (]SH r-'_ODIJLATION ,r_H KFM ,E]t.B,SH K_'4 ,Elq.5,_SH KPM ,E]!

*._,,SH C_F ,FI'_.5,SH WK:4 ,FIm.m/lSH FOIIIP,MFNT /I)

1206 FORMAT (]SH DEMODI;LATION ,SH KFD ,F]'_.r.,,5H Kr) .F]m.5,SH KPD _,l=lq

*.m,SH C.KD ,F]t.r-;_SH WKF) ,Flm°m,/15H EOIIIPMENT //)

1207 FORMAT 1161t TR,^NSMITTFR ,SH K£T ,F!"_°=,,SH KW£T,FI_oS,_H CKF ,_1"_

*°m,SH WKF ,FI_,.r,/'I=,H POWER SL.IP_LY //)

1208. FORMAT (ISH RECFIVER ,514 K£R ,FI_.B,SH KWqR,E]_°5,,_H CKF ,Flq

*°r_,5H WKF *F'lI°5/15H POWER SUPPLY //)

1209 FORMAT ( 7H KS = ,E13°5,]lH L,aMBDA = ,F13.5,1"_H LAMBDA I = ,F1B

*.5,614 R = ,E13.5,]0H TAU T : ,EIB.5//1Ol4 TALl R = ,ElB.5,10H TA

*U A = ,E13.5, 8H ETA : ,I:'13.5,11H IS/N) = ,FI3.5,7H QR : ,El3.

*6IPH] )

1210 FORMAT(71{ H = _E]'_°5_TH C = ,E]_°6//)

2000 FORMAT( 7HI KN = ,ElS°£_7H K = _F]£°_,TH KMT = ,F]8°8,TH KNT =

* F]8.8,,TH KQT = _E]8._I/ 7H KMR = _FIS.R,TH KNR : ,E]8.P,,7H K(,)R = ,

* FIR.P,7H KGT : _EIR.R, 7H KHT = ,FI£.RITH KJT : ,EIR.R///}

2001 FORMAT(53X,23HINITIAL CONDITIONS DATA//llH THETA-R = ,F]2.5,,

* 6H I)T : ,F]2.5,6H DR = ,F12.5,6H PT = ,EI2.B,6H CV = ,F12.5// )

END
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APPENDIX A2. 7

RADIO RECEIVER OPTIMIZATION PROGRAM

WITHOUT COMPONENT STOPS (ROP)

FUNCTION

The function of the ROP program is to determine the optimum

values of the major system parameters as a function of information

rate for a radio receiver.

DESCRIPTION

Exhibit A2. 7-1 is a detailed flow chart of the ROP optimization

program. The input information required for the program is the

systems burdens data, the systems parametric data, and the initial

conditions data. Exhibit A2. 7-Z contains a listing of the Fortran IV

ROP program.

AZ. 7-1 6 March 1967
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EXHIBIT AZ. 7- 1
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EXHIBIT AZ. 7-2

C_lCP ."r'TI"'IZ#TIO."! '.'ETIIOr"OLOG_ POP DPOGP-A'I

OFAL KTHT, KDT_ *4T, NT,KTIIR_ KDR_ MR, NR* KAT,KWAT,KPOT, KAR

PFAL K'.,iAR,KPQR, F.PT_, Kt"T, KH, KX, KF, KFM., Kr'!, KPM, KFD, KD
R[-#-L KPD, KST,Kt'tST, KSR,KWSR, KS, KHT, KJT, KGT, KMT, KNT, KQT
REt. L K"R, KNR, KQP,Lt,"BDA,L._!qDI,K,KN
COt.!vON/TP, Ar'iT/ KTHT,KDT,CKT,WKT,,T,NT
CO'."'CN/RCANT/ KTHR,KDR,CKR,'.,,tKR,.'.'R,NR

CCt't,'ONIT,'CTSI KAT ,KWAT ,KPQT ,CAT,W,qT _QT
CD'"40N/P/' CTS/ KAR, KWAR, KPt),R, CAR ,WER ,OR
CD_'MOt':/TRNS"'/ KPTgKWT,KI-I,KX,KE,CKPgCKHgWKP,WKH,PKT,GT,HT
CO'!'.!0.':/E 2'"©D / KF',', K,_' , KPS.1,CK _/,WK,V
CO',*'_ONIECF_"D/ KFD, KD,KP'),CKD 9WKD
d'C"_,"_DN/TPN_S/ KST,K',"ST,CK'F,WKE
CO"P"ON/RCVPS/K £R ,KWSR _,CKF, WKF

CO_-IMON/GENRL / KS,LA_'_BDA,LMRD I,R , TAUT ,TA'_R ,TAUA,ETA, SN,QB

CO.*']MON/O'!T P T / KHT, KJT, KGT, KMT, KNT ,KQT,KMR, KI_:R,KQR

READ(5,1100) KTHT ,KDT, CKT,;':KT,MT ,NT

WR ITE (6, ]200 )KTHT, KDT,CKT,WKT,MT ,NT

RE_D(5,1]O0) KTHR, KDR, CKR,WKR,P.R ,NR

WR ]TEl 6,120& )KTHR, KDR,CKR,WKR,MR ,NR

READ(5,] 100) KAT ,K'#AT, KPOT., C AT ,'."BT,QT

WR ITEl 6, ] 202 )KAT ,KWAT, KPQT _,CAT ,WP,T ,QT

READ(5,1100) KAR ,K_4AR 9KP.QR, CAR, WP.R ,OR

WR ITE (6,1203 )KAR ,KWAR,KPOR, CAR ,t'!P,R,OR

READIS.I]O0) KPT ,KWT, KH, KX, KE, CKP, CKH,;:'KP,',','KH,PKT ,GT ,HT

WR ITE(6,1204 )KPT,K":T ,KH,KX,KE,CKP,CKH,WKP,":KH,PKT,GT,HT

READ(5,1100} KF,_II,KM, KP_!, (KM, WK_ '

WRITE ( 6,1205 ) KFt,!,K_,_., KP.M,CKt. _,WK,*-'
READ(5,IIO0) KFD,KD,KPD,CKD,WKD

WR ITE(6, ]206) KFD,KD, KPD,CKD,WKD

READ (5,]100) KST,KWST,CKE,WKE

WRITE{6,1207) KST,KWST,CKE,WKE

READ(5,I]O0) KSR,KWSR,CKF,WKF

WR ITE(6, :I208)KSR,KWSR,CKF,WKF

READ {5,1]00) S_';K,TE

WRITE(6,12]O) SP'K, TE

READ(_,I]O0} KS,LA'4P.D/'.,L_'.IEDI,R,TAUT,T/_UR,TAt_A,FTA,SN,QB

WR ITF (6,1209 )KS ,LAMBDA, LMBDI ,R, TAROT ,TAUR,TAUA, ETA,SN ,QP.

KR = (,3*TAUR_TAUA*TAUT)/(LAMFDA*_'2 *IR**2 * SI"K} * TE * SN)
KMT = KTHT

KNT = KDT*IKS*(I°+KWAT)+ KPQT<-KWAT*IKST+KS*KWST))
Y..QT = KAT/LAB'BDA*<-QT

K_R = KTHP

KNR = KDR*IKS_'(I°+ KWAR) +KPQR*K_'J/_R*IKSR + KS*KWSR))
KGT = KPT

KHT = KS._KWT

KJT = KS'4-IKWST/KE + KX_II,-_F)/KF} + Y.ST/KE + KH*II,-KF)/KF
KQR = KAR

WRITE (6 ,2000) KN,K,KMT ,KNT ,KQT, Yt'R,K,*IR,KOR,KGT,KHT,KJT

READ (5.II00) DTI,DRI,PTI,THERI,CVI,(VB'IN
CV = CVI

DELCV = CV/IO,

DT = DTI

PT = PTI

DR = DR I
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EXHIBIT A2.7-Z (continued)

THER = THERI
WRITE (6,2001) THER,DT,DR,PT,CV

8 PCTPDT =(MT*KHT*DT**HT + NT*KNT*DT**NT +QT_KQT*DT**QT)/DT
lO PCGPPT =(GT*KGT*PT_*GT + HT*KHT*PT_*HT)/PT + KJT

F1 = DT*PCTPDT
F2 = 2.*PT * PCGPPT
T = F1 - F2
IF((F1/F21 .GT. .999995 .AND. (F1/F2) .LT. 1.000005 ) GO TO 60
PCGPT2 = (GT*(GT-I.)*KGT*PT**GT +HT*(HT-1.)*KHT*PT**HT)/PT*_2
DELPT = T/(2.*(PT*PCGPT2 +PCGPPT))
XXX = PT + DELPT
IF(XXX .LT. 0.) XXX = PT/2.

PT = XXX
GO TO I0

60 CONTINUF
80 PCRPDR = (HR*KMR*DR**PR + NR*KNR*DR**NR)/DR

FI = DT*PCTPDT

F2 = DQ*P£RRDR
W = F1 - F2
IF((F1/F2) .GT. .999995 .AND. (F1/F2) .LTo 1.000005 )GO TO lO0

P£RDR2 =(MR*(MR-1.)*KMR*DR**MR +NR*(NR-I°)*KNR*DR**NR)/DR**2
DELDR = W/(DR*PCRDR2 + PCRPDR)
XXX= DR + DELDR

IF( XXX .LT. O. ) XXX = DR/2.
DR = XXX

GO TO 80

100 CT = KMT*DT**MT +KNT*DT**NT +KQT*DT**QT
CR = Kt_R*DR_*MR +KNR_DR**NR

CG = KGT*PT**GT + KHT*PT**HT + KJT*PT

CO : KQP*THER**I-OR)
EVA = CT+ CR + CG + CQ
IF((CV/CVA| .GT..99995 .AND. (CV/CVA) .LT. 1.00005 ) GO TO 280
PCTPDT = (MT*KMT*DT**MT + NT*KNT*DT**NT + QT*KQT*DT**QT)/DT

PCRPDR = (MR*KMR*DR**MR + NR*KNR*DR**NR )/DR
PCGPPT = (GT*KGT*PT**GT + HT*KHT*PT**HT )/PT + KJT
PCTDT2 = (MT*KMT*IMT-I.)*DT**MT + NT*(NT-I.)*KNT*DT**NT + QT*

• (QT-I.)*KQT*DT**QT)/DT**2

PCRDR2 =(MR*IMR-I.)*KMR*DR**MR + NR*INR-I.)*KNR*DR**NR)/DR**2

PCGPT2 =(GT*IGT-I.)*KGT*PT**GT + HT*(HT-I.)*KHT*PT**HT)/PT**2

PPTPDT =(DT*PCTDT2 +PCTPDT)/(2°*PCGPPT+ 2.*PT*PCGPT2)
PDRPDT = (DT*PCTDT2 + PCTPDT)/(PCRPDR + DR*PCRDR2)
DELDT = (CV-CVA)/( PCTPDT +PCRPDR*PDRPDT +PCGPPT*PPTPDT)
XXX = DELDT +DT
IF( XXX .LT. O. ) XXX = DT/2,
DT = XXX
GO TO 8

280 DTO = DT
PTO = PT
DRO = DR
THERO = THER

RB = KR*DTO*_2 *DRO**2 _PTO

CALL OUTPUT(DTO,DRO,PTO,THERO,RB}
IFICV .LE. CVMIN) GO TO 370

IFICV .EQ. DFLCV) DELCV = DELCV/IO°

CV = CV - DELCV
GO TO 8

370 STOP
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EXHIBIT AZ. 7-Z (continued)
II00 FORMAT (6E12,5)
1200 FORMAT (15H1 TRANSMITTER

*,5,5H WKT _E13,5_SH MT
1201 FORMAT (15H RECEIVER

*.5,5H WKR ,EI3.5,5H MR

,5H KTHT,EI3.5,5H KDT ,EI3.5,5H CKT ,El3

,EI3.5,5H NT ,EI3.5/15H ANTENNA //)

,SH K'THR,FI3.5,5H KDR ,EI3.5,5H CKR ,El3

.E13.5,5H NR ,E]3.5/I5H ANTENNA //)
1202 FORMAT (15FI TRANSMITTER ,SH KAT ,EI3.5,5H KWAT,EI3°5,5H KPQT,EI3

*.5,5H CAT ,EI3.5,5H WBT ,FI3.5,SH QT ,EI3.5/15H ACQUISITION /
* 15H AND TRACK I

15H SYSTEM //)

1203 FORMAT (15H RECEIVER ,SH KAR ,EI3.5,SH KWAR,E13.5,5H KPQR,E13
*.5,5H CAR ,E1_oS,5H WBR ,EI3.5,SH QR ,EI3.5/15H ACQUISITION /

* 15H AND TRACK

* /15H SYSTEM //)

1204 FORMAT (15H TRANSMITTER ,5H KPI ,EI3°5,SH KWT ,E13.5,SH KH ,E13

*,5,5H KX ,EI3.5,5H KE ,EI3.5,_H CKP ,EI3.5/15X,SH CKH ,EI3.5,5H

*WKP ,EI3.5,SH WKH ,EI3.5,5H PKT ,EI3.5,SH GT ,EI3°5_5H HT ,E13°5
* //)

1205 FORMAT I15H MODULATION ,SH KF_' ,E13.5,SH KM _E13°5,SH KPM ,E13

*.5.5H CKM ,E13.5,SH WKM .E13°5/ISH EQUIPMENT //)
1206 FORMAT (15H DEMODULATION ,SH KFD ,E13.595H KD 9E13°5_SH KPD ,E13

*.5,5H CKD ,EI3°5,SH WKD ,EI3.5/15H EQUIPMENT //)

1207 FOR#AT (15H TRANSMITTER ,5H KST ,E13°5,5H KWST,E13.5,5H CKE ,El3

*.5,5H WKE ,EI3.5/15H POWER SUPPLY //l

1208 FOR_T (15H RECEIVER ,SH KSR ,EI3.5,SH KWSR,EI3.5,5H CKF ,El3

*.5,5H WKF ,E13.5/15H POWER SUPPLY //1

1209 FORMAT ( 7H KS = ,E]3.5,11H LAM£DA : ,EIB.5,13Fl LAMBDA I = ,El3
*.5.6H R : _EI3.5,10H TAU T : ,EI3.5//lOH TAU R = ,E13°5,lOH TA

*U A = ,E13.5, 8H ETA = ,F13.StIIH IS/N) : ,E13.5_TH QB : *E13°
*_I2H] 1

1210 FOR_AT(TH SHK : ,E13°5,TFI TE : tell,51

2000 FORMAT( 7HI KN = ,EI8.R,TH K : ,EI8.P,7H KMT : ,EIB._,TH KNT : ,

* Z18°8,TH KQT : ,E18.8/ 7H KMR : ,EIB.RtTH KNR : ,EI8,8,TH KQR : ,

* EIS.8,TH KGT = ,E18.8, 7H KHT : ,EIS.BITH KJT : ,E18°8///)

2001FORMAT(53X,23HINITIAL CONDITIONS DATA//IlH THETA-R = ,E12.5,

* 6H DT = ,EI2°5,6H DR : ,EI2.5,6H PT : ,EI2.5,6H CV : ,E12.5// )
END
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14.0 HEAT REJECTION SYSTEMS

14. I INTRODUCTION

The spacecraft thermal control system requirements imposed by

the communication system and the resulting cost, weight, and area

burdens are presented in this section. The communication system

characteristics which determine the thermal control requirements are

the output power, efficiency, and operating temperature of the trans-

mitting source. In addition, the thermal control system burden is also

influenced by the mission thermal environment and the spacecraft

configuration.

14. Z COMMUNICATION SYSTEM HEAT REJECTION REQUIREMENTS

14.2. I General Considerations

Since operation of the transmitter will not be continuous through-

out the mission, the steady state thermal control of the spacecraft must

of necessity be independent of rejected transmitter heat. Thus, essen-

tially all the heat produced by intermittent operation of the transmitter

must be rejected from the spacecraft. The power to be rejected, W, is

then

1 -k
e

W =PT k
e

where

PT = transmitter output power

k = transmitter efficiency
e

This approximation of rejected heat burden is totally conservative since

it is assumed that none of the power rejected by the transmitter may be

put to effective use in thermal control.
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The system parameters of most significance in determining the

radiator burden for a given transmitted power are the operating tem-
perature of the transmitting source and its efficiency. Operating

temperatures range from less than 100° F for some laser sources to
400 to 500° F for TWT microwave sources. The efficiencies vary

even more widely. If the transmitter power and efficiency have been
specified and if its operating temperature is known, the associated radiator

weight, area, and cost burdens are essentially determined.

14.2.2 Transmitter Source Characteristics

Microwave Sources. The microwave source of greatest interest for

long space missions is the traveling-wave amplifier tube (TWT),

Figure 14-I. The greatest heat is generated at the collector surface

of the TWT. These parts may reach temperatures as high as 400 to

500 ° F in present long life tubes. For lower power levels (less than

I00 to 200 watts output) it is customary to conductively cool the collec-

tor by thermally connecting it to a heat sink, which conducts to an

external radiating surface. Higher power tubes are customarily cooled

by flowing a coolant fluid through integral passages in the collector and

other critical parts. The upper limit in outlet fluid temperature is

imposed by the collector temperature limitations although it is typically

somewhat lower as a result of temperature drops in other parts of the

internal tube coolant circuit.

For power levels beyond I kw, TWTs are generally built in a

different configuration from that used at lower powers. The high power

configuration uses a cavity resonator which requires a solenoid to pro-

vide the necessary magnetic field. The solenoid must be cooled as well

in this case. With modern high temperature insulating materials the

solenoid operating temperatures may be comparable with the collector

temperature.

Traveling wave tubes operate at efficiencies as high as 30 percent

including power supply losses. For high power tubes, the solenoid

cooling requirement is reflected in the efficiency.
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Figure 14-I. Schematic diagram showing

basic parts of a traveling-
wave tube.

Optical Transmitting Sources. The two optical sources of primary

interest here are the CO 2 laser (10.6 _ wavelength) and the Argon laser

(0.5145 _ wavelength). They differ drastically in operating efficiency

and operating temperature requirements.

The CO 2 laser operates at efficiencies as high as 15 percent. To

achieve this high efficiency, the gas mixture must be kept at tempera-

tures of 20 ° C or less. Efficiency drops off rapidly at higher tempera-

tures. For a typical low power device, output was reduced froml.5

watts at 20 ° C to 0.7 watt at 60 ° C and 0.25 watt at I00 ° C. To main-

tain the required temperatures, most laboratory versions use water as

a coolant, flowing it between the wails of the discharge tube and an

outer concentric jacket. For the high power levels envisioned for

space transmitting sources, an active fluid cooling system is virtually

a necessity.

The Argon laser is characterized by efficiencies of the order of

0. I percent or less. The very large fraction of input power which must

be rejected as a result of this inefficiency demands liquid cooling for

all power levels under consideration. Efficiency is not a critical func-

tion of the operating temperature as is the case with the CO 2 laser.
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The upper limit in operating temperature is imposed by the limits for

safe operation of the solenoid which surrounds the discharge tube and

provides the pumping magnetic field. The pumping solenoid generates

a large amount of heat and both it and the discharge tube must be cooled.

The most effective way to achieve this is to flow the coolant fluid

through the annular passage between them. Maximum operating tem-

peratures imposed by solenoid temperature as limited by modern high
temperature insulating materials may be as high as 200 to 300 ° F.

14.3 GENERAL HEAT REJECTION SYSTEM CONSIDERATIONS

Heat rejection systems may be classified as active or passive.

In the most general sense, an active system is one which embodies

moving parts (e.g., a coolant fluid or a thermal switch) while a passive

system does not. In typical active systems heat is conveyed to the

radiating surface by first transferring it to a fluid medium which is then

physically transported to the radiator where its heat is rejected. In a

passive system heat is conveyed to a radiating surface and dissipated

from it by purely static processes. Passive systems usually are

limited to dissipation of relatively small quantities of heat per volume

in cases where an excellent thermal conductive path exists between the

heat source and radiating surface.

14.4 ACTIVE HEAT REJECTION SYSTEMS

In general, the active heat rejection system consists of a heat

exchanger to transfer heat from the transmitting source to the cooling

fluid, the necessary plumbing to convey the fluid to the radiator, and

the radiator itself. Of these, the radiator proper is the major contrib-

utor to the thermal control system cost, weight, and area burdens.

The heat exchanger at the transmitting source is an integral part of the

source and is characteristic of it. The burdens associated with trans-

ferring heat from the source to the cooling system are thus included in

the transmitting source burdens and cannot meaningfully be divorced

from them. The remaining system components--plumbing, pumps, con-

trols and the coolant itself-- are of less significance than the radiator
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with respect to cost, weight, and volume. They are, in any event, so

peculiar to a specific vehicle and communication system configuration

as to preclude meaningful treatment here.

Both condensing and non-condensing heat rejection systems will

be discussed. Condensing (two phase) systems are most applicable to

dynamic power systems and so are included as a matter of general

interest. Non-condensing (single phase) systems appear more applica-

ble to cooling transmitting sources since boiling of the coolant fluid in

condensing systems introduces vapor pockets and would lead to local

hot spots in critical areas.

The design of optimum fin and tube radiators is a fairly compli-

cated process which has been adapted to computer optimization. Input

variables typically include radiator and heat sink temperatures, power

capacity, coolant pressure drops in the tubes and headers, and sus-

ceptibility to meteoroid damage during a given mission. The optimum

configuration may then be determined in terms of tube length, number

of tubes, fin length, fin diameter, and tube wall thickness. Optimiza-
tion may be with respect to radiator specific weight (ibs/ft2), specific

heat rejection (watts/ft2), or specific cost (dollars/ft2), depending on

the particular constraints of the mission.

14.4. I Radiative Heat Transfer

For typical spacecraft fin and tube radiators the controlling
thermal resistance is conduction and radiation in the radiator fin.

Therefore, the preliminary designer need only consider heat transfer

in the fin. Heat transfer from the working fluid to the fin is a second-

order effect and must eventually be treated in some detail.

Radiant heat transfer from a flat surface at temperature, T, to

a sink at absolute zero is described by the Stefan-Boltzmann equation:

Q : co T4 (14-1)
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where

radiative power (watts/ft 2)

surface emissivity
-I0= Stefan-Boltzmann constant = 5 × I0

T = radiating surface temperature (°R)

watt s/ft 2 ° R4

For a non-zero sink temperature, this expression becomes

Q = 0 c (T 4 - T 4)
S

(14=2)

where

T = sink temperature (°R)
s

If solar illumination is incident on the radiator,

reducing the effective radiative heat flux (i.e.,

duced by an on-board source) to

it must also be rejected,

dissipation of heat pro-

Q = ¢ o (T 4 - T 4) - a H cos @ (14-3)
s S

where

s
surface absorptivity to solar illumination

solar illumination intensity (watts/ft 2)

@ = angle between the incident solar illumination and the normal
to the radiator surface

c = surface emissivity

A quantity termed the fin effectiveness is introduced to assist in

the evaluation of the performance of a finned radiator. It is defined as

the ratio of the heat rejected by the fin to that which would be rejected
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if the entire fin were maintained at the base temperature. Expressed

mathematically:

B

fo _ T 4 dxX

_3 = (14-4)
B T4
2

where

= fin effectiveness

B = tube spacing

T x = temperature at a point on the fin

x = distance along fin

T = fin base temperature

This equation was derived by Coombs I et al.,and was solved numerically

on an IBM-704 computer. The results are given in Figure 14-2 as a

function of the dimensionless radiation modulus Mr, defined as:

B 2 ¢ o T 3
M - (14-5)r kt

where

k = conductivity of fin material

t = fin thickness

By using the curve in Figure 14-2 the fin effectiveness may be evaluated

for a given material, geometry, and base temperature (T). Equation

(14-1) is plotted in Figure 14-3 for various values of the product _

which constitutes an effective emissivity.
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14.4.2 Radiator Area Requirements

Condensing Systems. For condensing radiators, the tube temperature

remains constant until the fluid is completely condensed as long as the

static pressure drop is kept small. This follows since the condensate

and condensing vapor are always in thermal equilibrium. If this condi-

tion is met, the area requirements for the condensing portion of the

radiator can be obtained by combining Equation (14-3) with the defini-

tion of fin effectiveness.

Q = _ _ r_(T4 T4) -as s Hcos @ (14-6)

Figure 14-3 can be used directly to obtain the required area if the

as shown is considered to be equal to the product, c_.

Non-condensing Systems. In non-condensing systems the radiant heat

rejection is accompanied by a sensible heat loss of the fluid. The tem-

perature decrease of the fluid results in temperature gradients both

perpendicular and parallel to the direction of fluid flow. This compli-

cates the analysis, but by combining the model of the condensing (con-

stant temperature) fin with that of a radiator which experiences a coolant

temperature drop, an expression can be derived to give the area require-
2

ments for the tube-fin configuration. The result is given by:

4

Q = _ g _ Tef f (14-7)

where

T
out

Q = radiative power (watts/ft 2)

T. = fluid temperature into radiator (°R)
In

= fluid temperature out of radiator (°R)
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3 T 3 T 3
in out

Teff = T Z + T.in in Tout

1/4

and

= fin effectiveness (evaluated at Tell)

Equation (14-7) is plotted in Figure 14-4 for various values of Tin and

AT = T.In-Tout. This figure can be used to determine the area require-

ments for the non-condensing radiator. Using fin effectiveness and

emissivity typical of non-condensing low temperature aluminum fin and

tube radiators the area requirements become 3

Z5.5 W
A - (14-8)

( T ) 4 square feet

for the zero sink temperature characteristic of deep space and

25.5 W
A = 4 square feet (14-9)

7-66 - 3zo

for a sink temperature of -40°F, typical of near earth orbits.

Fin and Tube Radiator Weight and Cost Burdens. According to

AiResearchCorporation, 4 low temperature radiator specific weight,

assuming aluminum construction and structural rigidity as required for

radiator areas greater than 50 ftZ, is approximately 0.95 ib/ft Z. For

smaller radiator areas, depending on the amount of structural rigidity

required, the specific weight may be as low as 0.045 ib/ft 2. Radiator

heat dissipation capability versus weight is plotted in Figure 14-5

based on 0.95 ib/ft 2. Typical costs as quoted by the same source

indicate development costs of $50,000, exclusive of environmental
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testing, for one 10 to 30 ft2 space qualified radiator. For production

of a number of identical radiators with the above development cost

amortized over five units, an approximate functional relationship

between radiator cost C H and area of

C H = $13, 750 + $75 A (14-10)

can be inferred. For large production runs, with the development cost

amortized over one hundred units, the radiator cost is reduced to

C H = $2, 750 + 25 A (14-11)
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Radiator heat dissipation capability versus cost for a five unit

production run is plotted in Figure 14-6.

14.4.3 Pressure Drops

Condensing Systems. For both condensing and non-condensing radiators,

determination of pressure drop in the coolant loop is necessary to deter-

mine the optimum tradeoff between piping diameter and coolant pump

size. The design of a minimum weight condensing radiator requires an

accurate prediction of the pressure drop associated with condensing in

the radiator tubes. This must be done with some precision since a loss

of static pressure in the condenser tubes lowers the (saturation) tem-

perature of the working fluid, resulting in a drop in radiating power.

Viscous drag is the mechanism by which condensate is removed

from a radiator-condenser. The working fluid enters the radiator-

condenser as saturated vapor, and is condensed at substantially constant

temperature by being subjected to a constant heat flux throughout the

length of the tube. After the working fluid has been completely condensed

it may be subcooled to reduce the possibility of pump cavitation, and in

the case of turboelectric systems, to provide a low-temperature bearing

and alternator coolant.

Many investigators have correlated pressure drop data for two-

phase flow in tubes with that for single phase flow. Of these, the corre-

lation of gockhart and Martinelli 5 is probably the best and most widely

used. They were able to correlate pressure drop for two-phase, two-

component flow in the non-dimensional form:

d-Z TPF g _ '
(14-1z)
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where

dP) = two-phase frictional pressure gradient
TPF

dP unit tube length of the gaspressure gradient per

g (vapor) phase alone

unit tube length of the liquidgradientpressure per

L phase alone

¢pg = dimensionless parameter

The experimental data of Lockhart and Martinelli were plotted in

terms of _0 and
g
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for different combinations of flow regimes, e. g. , viscous liquid-turbulent

gas and turbulent liquid -turbulent gas. While these correlations were for

two-component flow, extension of these correlations to boiling or condens-

ing(i, e., two-phase one-component flow) has been suggestedbyMartinelli

andNelson 6 and has been tested with some success. In supportof this

extrapolation, McAdams 7 has found that friction arising from transfer

of momentum between phases of a one-component system was of little

importance under hi's experimental conditions. Furthermore, gockhart

and Martinelli stated that their correlation was independent of flow

mechanism, whether mist, annular or stratified flow existed. Experi-

mental work indicates that these correlations predict reasonable values

for condensing pressure drop in tubes.

The Lockhart and Martinelli correlation for viscous-turbulent

flow is reproduced in Figure 14-7. In the range of interest it can be

represented by

0.0825

q_g = 1.76 X (14-13)

where

=_dP
X dP

rc) 
(14-14)

By combining Equations (14-12), (14-13), and (14-14} with the appro-

priate values of (dP/dL}g and integrating the resulting expression to

account for the changing flow conditions throughout the length of the tube,
8

an expression for the frictional pressure drop can be derived. The

result is given by:

Ap) 0.402W T 1.684_ 0.316
_- TPF N I. 684 D4. 684gpg gc

(14-15)
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where

W
T

g

N ..

D =

P
g

= weight flow

= viscosity of vapor

= viscosity of liquid

number of tubes

inside tube diameter

= density of vapor

14-16



p$, = density of liquid

g = gravitational constant

Any consistent system of units may be used.

In addition to the frictional pressure drop given by Equation

(14-15),there is a pressure rise due to the momentum loss of the high

velocity vapor as it traverses the condenser tube. Since the fluid veloc-

ity is essentially zero at the exit of the condenser this is given by

outletf

= !I p udu = - pg U2 (14-16)
AP

M " inlet o

p = density at two phase mixture

u = velocity of two-phase mixture flow

U = vapor velocity at condenser inlet
o

or for parallel flow through N tubes

I. 62 WT2 )AP M = Pgg D4 N2 (14-17)

where the negative sign indicates a pressure rise. Equations (14-15)

and (14-17) can be used to calculate the pressure drop in condensing

radiators.

Non-condensing Systems. In non-condensing systems, which reject

heat by cooling a liquid, the pressure drop is predicted by the Fanning

friction equation:

dP 2f u 2 P

d--L = g D (14-18)
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where the friction factor, f, is given by

-0. 25
f = 0.079 Re (14-19)

where R
e is the Reynolds number. For flow through N tubes in parallel:

I. 75 0. 25W
Ap T

- 0.242 (14-20)
L N I . 75 D 4. 75 Pg

Equation (14-20) gives the pressure drop for a non-condensing

radiator.

14. 5 PASSIVE HEAT REJECTION SYSTEMS

Passive heat rejection systems are preferable when they can meet

the requirements because of their extreme simplicity and concomitant

lighter weight, lower cost, and higher reliability. They consist merely

of a conducting path between the heat source and an external radiating

surface, often a part of the spacecraft structure, having a highly emissive

surface coating with low solar absorptivity. The limitation on their

utility is almost always excessive temperature gradients in the con-

ducting path as a result of thermal resistance. If the radiator is a flat

surface having a uniform temperature, the heat dissipation capability is

Q = ¢ ° ( T4 -T4)s - _'s Hcos @ (14-21)

where

Q = radiative power (watts/ft 2)

¢ = surface emissivity
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g = Stefan-Boltzmann constant = 5 × I0 -I0 watts/ft 2 - °R4

T = radiating surface temperature (°R)

T = sink temperature (°R)
S

Oc = surface absorptivity to solar illumination
s

H = solar illumination intensity (watts/ft 2)

@ = angle between the incident solar illumination and the normal
to the radiator surface

Equation (14-21) is plotted in Figure 14-8 for various solar distances

and normally incident solar illumination with a = 0. 18 and ¢ = 0.87. "_
s
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Figure 14-8. Specific heat dissipation capacity versus temperature of

radiators in direct sunlight at various solar distances.
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NOMENCLATURE

radiator area

tube spacing

radiator cost

inside tube diameter

-0. Z5
friction factor = 0. 079 R

e

gravitational constant

solar illumination (watts/ft Z)

conductivity of fin material

transmitter efficiency

length along tube

radiation modulus B g= e _ T3.kt/

number of tubes

pressure

pressure rise due to momentum loss

heat dissipation capacity (watts/ft Z)

tleynolds number

radiating surface temperature

radiator effective temperature

radiator inlet temperature

radiator outlet temperature

Tin-- Tou t

radiator temperature

sink temperature

temperature point on radiating fin
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W H

W T

X
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¢

@

_g

P

Pg

P_

(_

_g

(dP/dL)g

fin thickness

vapor velocity at condenser inlet

velocity of two-phase mixture flow in condenser

total heat dissipated

radiator weight

mass flow rate

distance along fin from base

surface absorptivity to solar illumination

surface emissivity

fin effectiveness

angIe between incident solar illumination and normal to
the radiator surface

micron

vapor viscosity

liquid, viscosity

two-phas e mixture density

vapor density

Iiquid density

Stefan-Boltzmann constant

dimensionless parameter which correlates pressure

gradients for two-phase flow and. single-phase fIow, viz. ,

(dP/dL)TPF = _2 (dP/d.L)g

pressure gradient per unit tube length for gas (vapor)

phase alone
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(dP/dL)_,

(dP/dL)Tp F

pressure gradient per unit tube length for liquid phase
alone

two-phase flow frictional pressure gradient per unit

tube length
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